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Preface 

 

The objective of this Final Technical Report of the multi-year AFOSR 

Contract No. F61775-01-WE018 is to outline the development of an innovative 

approach to integrated estimation/guidance design to be applied for the interception 

of maneuvering targets in the environment of noise-corrupted measurements. This 

Final Technical Report also presents a comprehensive summary of the multi-year 

investigation allowing to follow the steps of the algorithm development and to 

appreciate the substantial improvement in homing accuracy that has been achieved. 

Although the examples used in the simulations were motivated by lower tier endo-

atmospheric Ballistic Missile Defense scenarios, the integrated estimation/guidance 

design is equally implementable for other interception tasks. In the simulation 

examples generic data were used and therefore the numerical results are only 

illustrative. Nevertheless, the results point out that the new integrated 

estimation/guidance design approach has the potential of achieving “hit-to-kill” 

homing accuracy even in extremely difficult interception scenarios.  
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Abstract 

 

This report summarizes a multi-year investigation effort resulting in an 

innovative integrated estimation/guidance design algorithm for the interception of 

randomly maneuvering targets using noise-corrupted measurements. The algorithm is 

based on separating the tasks of model identification, state reconstruction and change 

detection, as well as assigning them to different estimators. The selection of the 

appropriate estimator for providing guidance information is accomplished by explicit 

logic-based use of the time-to-go. The homing guidance is performed by a   

differential game-based bounded control guidance law, modified for enhancing its 

efficiency in the terminal phase. The algorithm was derived using a planar linearized 

model, but it was implemented and validated in a generic nonlinear three-dimensional 

ballistic missile defense scenario. The simulation results demonstrate an exceptional 

homing performance improvement compared to earlier results and a potential to 

achieve “hit-to-kill” accuracy. 
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1. Introduction 

 The task of intercepting maneuvering targets has been a major challenge to the 

guided missile community. Until recently interceptor missiles were designed and used 

against aircraft type targets having a moderate maneuvering capacity. In such 

scenarios, the speed and the maneuverability of the missile largely exceeded those of 

the target. Due to the vulnerability of an aircraft structure, miss distances of the order 

of a few meters (compatible with the lethal radius of the missile warhead) were 

considered admissible. The threat imposed by tactical ballistic and cruise missiles 

attacking high value targets (probably with unconventional warheads), emphasized 

the challenge of intercepting anti-surface missiles by defensive guided missiles 

(ballistic missile defense and ship defense being example scenarios). These modern 

anti-surface missiles fly at very high speeds and their maneuvering potential in the 

atmosphere is comparable to that of the interceptors. Moreover, though they are not 

designed to maneuver, this potential can be made useful by a modest technical effort 

even by not sophisticated countries. 

 

 Successful interception of anti-surface missiles, carrying lethal warheads, 

much less vulnerable and more dangerous than an aircraft, requires a very small miss 

distance or even a direct hit (“to hit a bullet with a bullet”). Although non-

maneuvering targets, emulating anti-surface missiles, were successfully intercepted 

recently [1-3], threats with high maneuver potential are anticipated in the future. 

Currently used guidance and estimation techniques will not be able to achieve the 

required homing accuracy against such targets. The reasons for this deficiency can be 

understood by reviewing the basics of missile guidance theory, as well as the 50 years 

history of guided missiles design practice. 
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 Guidance theory points out that the main error sources responsible for non-

zero miss distances are: (i) noisy measurements, (ii) non ideal dynamics of the 

guidance system, (iii) the contribution of target maneuvers, (iv) limited missile 

maneuverability leading to saturation. Nevertheless, simulation studies and flight tests 

have demonstrated that adequate maneuverability advantage of the interceptor can 

make the resulting miss distances sufficiently small.  

 

 All known missile guidance laws used at the present, including Proportional 

Navigation (PN), are based (assuming perfect information) on deterministic linearized 

constant velocity kinematical models using a linear quadratic optimal control concept 

(with unbounded control). Thus, the limited maneuver potential of the interceptor has 

not been explicitly taken into account. Although PN was derived on the basis of an 

intuitive kinematical concept [4], it was shown to be an optimal guidance law against 

non maneuvering targets, assuming ideal missile dynamics [5]. More advanced 

guidance laws have included the effects of non-ideal dynamics of the guidance system 

and the contribution of target maneuvers in the generalized zero effort miss distance 

and used a time-varying gain schedule [6]. For the contribution of the target 

maneuvers, their current value and future evolution must be known. Since it cannot be 

directly measured, the information on the current target maneuver has to be obtained 

by an observer. For the future evolution, for sake of simplicity, in most cases a 

constant target maneuver has been assumed.  

 

 Theory predicts that such a guidance law can reduce the miss distance to zero 

if (i) the assumption on the target behavior is correct, (ii) the measurements are 

ideally accurate and (iii) the lateral acceleration of the interceptor does not saturate. 
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Nevertheless, if the interceptor/target maneuver ratio is sufficiently high, the 

inevitable saturation occurs only very near the end of the interception and the 

resulting miss distance becomes negligibly small. 

 

Interceptor guidance has to be performed in realistic interception scenarios, 

involving unknown random disturbances and noise corrupted measurements. As a 

consequence, estimators have become indispensable elements in every interceptor 

guidance system and the homing performance of the interceptor missile has been 

limited by the estimation accuracy. It has been of common belief in the guided missile 

community that estimators and guidance laws can be developed independently.  This 

belief, leading to a comfortable design practice, has been based on assuming that both 

the Certainty Equivalence Principle and the associated Separation Theorem [7] hold. 

However, for realistic interceptor guidance with noise-corrupted measurements, 

bounded controls and saturated state variables, as well as non-Gaussian random 

disturbances, the validity of this assumption has never been proven. In most cases, 

such convenient design approach had been acceptable, because it succeeded to satisfy 

the performance requirements, due to the substantial maneuverability advantage of 

guided missiles over their manned aircraft targets. Applying the same suboptimal 

approach also for the interception of highly maneuvering targets results in 

unsatisfactory homing performance as reported in Refs. [8-10]. 

 

 Since 1993 a research team at the Faculty of Aerospace Engineering at the 

Technion – Israel Institute of Technology in Haifa has been conducting investigations, 

sponsored by AFOSR, studying the problem of intercepting maneuvering targets. The 

first objective of the Technion research team has been to identify the origin of the 
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unsatisfactory performance in the interception of highly maneuvering targets. A 

thorough analysis of extensive simulation results was carried out in the framework of 

AFOSR Contract No. F61708-97-C-0004 (terminated in 2001). It was aimed at 

understanding how key parameters in the models of the interceptor missile and of the 

target affect the outcome of an engagement against highly maneuvering autonomous 

unmanned flying vehicles and found the main reasons responsible for the deficiency 

of currently used guidance and estimation techniques against such targets. 

 (a) The optimal control formulation requires knowledge of the future 

acceleration profile of the maneuvering target, which is never available. For this 

reason in the guidance laws constant target acceleration (or no acceleration) were 

assumed. 

 (b) The velocities in realistic interception scenarios are far from being 

constant. Lateral acceleration limits are not constant either, because in many 

scenarios, such as in ballistic missile defense, the altitude is also varying. 

 (c) The estimation process, necessary for an efficient guidance with 

measurement noise, introduces an inherent delay in the information on target 

maneuvers.   

 

 In order to alleviate the difficulties caused by these features an innovative 

design approach was developed and presented in several papers [11- 19]. It was based 

on three non-orthodox ideas: 

(i) The interception scenario was formulated as a zero-sum pursuit-evasion game. 

(ii) Time-varying velocity and maneuverability profiles were considered. 

(iii) A guidance law taking into account the estimation delay was derived. 
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The application of these ideas yielded a substantial improvement in homing 

performance, as reported in recently published papers [20-22]. In spite of this 

improvement, a hit-to-kill accuracy could not be attained, because the estimation 

delay was only partially compensated and the variance of the residual (converged) 

estimation error could not be eliminated. For further improvement both the estimation 

delay and the variance of the residual estimation error have to be minimized, 

presenting contradictory requirements. Reducing the variance of the converged 

estimation error requires a narrow bandwidth, whereas short delays can be achieved 

only by using an estimator with a large bandwidth. 

 

 Based on these results, in October 2001 a new research program was initiated 

in the framework of AFOSR Contract No. F61775-01-C-0007. The goal of this 

research effort, planned for the three years, was "to develop a new estimation 

approach suitable for the requirements of accurate terminal guidance of interceptor 

missiles". The planned research consisted of several elements:  

(i) An extensive critical review of the existing literature on estimation and 

guidance. 

(ii) Selection of a set of relevant estimation approaches and testing them in 

generic interception scenarios, comparing their estimation errors and 

analyzing their associated homing performance. 

(iii) Development of a new estimation/guidance approach based on the results of 

the investigation described in (ii). 

(iv) An extensive Monte Carlo numerical study, assessing the performance of the 

new approach in a large variety of interception scenarios with different target 

maneuver models. 
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 The objective of this Final Technical Report is to present a comprehensive 

summary of the results obtained and the lessons learned in this multi-year research 

study. The results obtained in the first two and half year of the contract were 

presented in detail in previous reports: 

1) Interim Technical Report, October 2001 – March 2002 (ITR1); 

2) Annual Technical Report , October 2002 – September 2002 (ATR1); 

3) Interim Technical Report, September 2002 – March 2003 (ITR2); 

4) Annual Technical Report, September 2002 – September 2003 (ATR2); 

5) Interim Technical Report, September 2003 – May 2004 (ITR3); 

as well as in several journal publications and conference papers [23- 32]. 

  

 In this Final Technical Report the underlying theory and the main results are 

repeated for the sake of completeness, followed by the presentation of new results 

obtained during the last phase.  

 

 This report is organized as follows. In the next section, the interception 

problem of maneuvering anti-surface missile is formulated. This is followed by a brief 

review of deterministic optimal interceptor guidance concepts and their 

implementation in a scenario of noise-corrupted measurements. In section 4 the 

difficulties in finding a feasible optimal estimator for this task are discussed. In 

section 5 the main results of the previous Technical Reports are summarized, whereas 

the details are given in respective appendices. In section 6, recently obtained results, 

not covered by these earlier reports, are presented.  
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 2. Problem Statement 

 

2.1. Scenario description  

 Two scenarios of intercepting maneuvering anti-surface missiles seem to be of 

practical interest. The first one is a three-dimensional endo-atmospheric ballistic 

missile defense (BMD) scenario with time-varying parameters (velocities and 

acceleration limits). The second scenario is the interception of a low flying cruise 

missile that can be approximately described by a horizontal, constant speed model. 

For the sake of research efficiency (simplicity, repeatability and reduced 

computational load), the major part of the analysis and the simulations was performed 

using a planar constant speed model. The more complex generic BMD scenario was 

used mainly for validation or to investigate important three-dimensional effects. 

 

 In both scenarios, the homing endgame starts shortly before interception, as 

soon as the onboard seeker of the interceptor succeeds to “lock on” the target. The 

relative geometry is close to a head-on engagement. It is assumed that at this moment 

the initial heading error with respect to a collision course is small, and neither the 

interceptor nor the target is maneuvering. These assumptions facilitate linearization of 

the interception geometry, and decoupling of the original three-dimensional equations 

of motion to two identical sets in perpendicular planes.  

 

2.2. Information structure 

 It is assumed that the interceptor measures range and range rate with good 

accuracy, allowing the computation of the time-to-go. However, the measurements of 

the line of sight angle are corrupted by a zero mean white Gaussian angular noise. The 
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interceptor’s own acceleration is accurately measured, but the target acceleration has 

to be estimated based on the available measurements. The target has no information 

on the interceptor, but, being aware of an interception attempt, it can command 

evasive maneuvers at any time during the endgame and change the direction of the 

maneuver randomly. 

  

2.3. Lethality model 

 The objective of the interception is the destruction of the target (the attacking 

anti-surface missile). In the reported investigation, the probability of destroying the 

target is determined by the following simplified lethality function. 

  (1) ⎨
⎧ ≤

=
,RM           , 1

P k
d > ,RM          , 0 k⎩

 
where Rk is the lethal (kill) radius of the warhead and M is the miss distance. This 

model assumes an overall reliability of 100% of the entire guidance system. 

 

2.4. Performance index 

 The natural (deterministic) cost function of the interception engagement is the 

miss distance. Due to the noisy measurements and the random target maneuvers, the 

miss distance is a random variable with an a priori unknown probability distribution 

function. A large number of Monte Carlo simulations can provide the cumulative 

probability distribution function of the miss distanses that allows comparing the 

homing performances of different guidance systems. Based on the lethality function 

(1), the efficiency of a guided missile depends on the lethal radius Rk of its warhead.  
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One of the possible figures of merit is the single shot kill probability (SSKP) for a 

given warhead, defined by   

 SSKP = E {Pd (Rk)}    (2) 

where E is the mathematical expectation taken over the entire set of noise samples 

against any given feasible target maneuver. The objective of the guidance is to 

maximize this value. An alternative figure of merit is the smallest possible lethal 

radius Rk that guarantees a predetermined probability of success. In several recent 

studies the required probability of success has been assumed as 0.95, yielding the 

following performance index. 

 J = r95 = arg {SSKP = 0.95} (3) 

 

2.5. Equations of motion 

 The analysis of a time-invariant interception endgame is based on the 

following set of simplifying assumptions:  

 
(i) The engagement between the interceptor (pursuer) and the maneuvering target 

(evader) takes place in a (horizontal) plane.  

 
(ii) Both the interceptor and the maneuvering target have constant speeds Vj and 

bounded lateral accelerations   |aj |<(aj)max  (j = E, P). 

 
(iii) The maneuvering dynamics of both vehicles can be approximated by first 

order transfer functions with time constants τP and  τE , respectively. 

 
 (iv) The relative interception trajectory can be linearized with respect to the initial 

line of sight. 
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 In Fig. 1 a schematic view of the planar interception geometry is shown. The 

X axis of the coordinate system is in the direction of the initial line of sight. 
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Fig. 1. Planar interception geometry 

 

  Note that the respective velocity vectors are generally not aligned with the 

reference direction. The aspect angles φP and φE are, however, small. Thus, the 

approximations cos(φi) ≈ 1 and sin(φi) ≈ (φi), (i = P, E), are uniformly valid and 

coherent with assumption (iv). Based on assumptions (ii) and (iv) the final time of the 

interception can be computed for any given initial range R0 of the engagement by 

 

 tf  = R0 / (Vp+ VE), (4) 

allowing to define the time-to-go by 

 tgo = tf  - t. (5) 
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  The state vector in the equations of relative motion normal to the reference 

line is 

 XT = (x1, x2, x3, x4) = (y, dy/dt, aE, aP), (6) 

where  

 y(t) =
∆

 yE(t) - yP(t) (7) 

The corresponding equations of motion and the respective initial conditions are 

 ,0)0(x,xx 121 ==&  (8) 

 ,00 PPEE2,432 VV)0(xxxx φ−φ=−=

c

c

0E

&  (9) 

  (10) ,0)0(x,/)xa(x 3E3E3 =τ−=&

  (11) ,0)0(x,/)xa(x 4P4P4 =τ−=&

where aE
c and aP

c are the commanded lateral accelerations of the target and the 

interceptor, respectively: 

 aE
c = aE

max  v;  |v| ≤ 1 (12) 

 aP
c = aP

max  u;  |u| ≤ 1, (13) 

 
 The nonzero initial conditions VE φ and VPφp0  represent the respective 

initial velocity components not aligned with the initial (reference) line of sight.  By 

assumption (iv) these components are small compared to the components along the 
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line of sight. The set of equations (8)-(11) can be written in a compact form as a 

linear, time invariant, vector differential equation  

 dX/dt= AX + Bu + Cv. (14) 

The problem involves two non-dimensional parameters of physical significance: the 

pursuer/evader maximum maneuverability ratio 

                            µ   (a
∆
= P)max /(aE)max               (15) 

and the ratio of the evader/pursuer time constants  

                                                   ε 
∆
=  τE/τP                                                               (16) 

 The miss distance (the deterministic cost function), can be written as 

 M =  |DX(tf)| = |x1(tf)|, (17) 

where  

                         D = (1, 0, 0, 0).                   (18)  

 

2.6. Game formulation 

 There is a basic deficiency in formulating the interception of a maneuverable 

target as an optimal control problem. Target maneuvers are independently controlled. 

Since future target maneuver time history (or strategy) cannot be predicted, the 

optimal control formulation is not appropriate. The scenario of intercepting a 

maneuverable target has to be formulated as a zero-sum differential game of pursuit-
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evasion. In such a formulation, there are two independent controllers and the cost 

function is minimized by one of them and maximized by the other.  

 

 Based on the above outlined assumptions and formulation, several 

deterministic zero-sum pursuit-evasion game models were solved. The game solutions 

provided simultaneously the interceptor’s guidance law (the optimal pursuer 

strategy), the "worst" target maneuver (the optimal evader strategy) and the resulting 

guaranteed miss distance (the saddle-point value of the game). In the next section the 

optimal guidance laws based on these game solutions are briefly described. 

 

3. Game Optimal Guidance Laws 

3.1. DGL/1 

 The first model that was solved (more then two decades ago) was a perfect 

information game [34], assuming that all the state variables and the game parameters 

are known to both players. The set of assumptions (i) – (iv) allowed casting the 

problem to the canonical form of linear games, from which a reduced order game with 

only a single state variable, the zero effort miss distance denoted Z, was obtained. As 

the independent variable of the problem, the time-to-go (tgo), defined by (5), was 

selected. The solution of this game is determined by the two parameters of physical 

significance µ and ε, defined by (15) and (16). The solution results in the 

decomposition of the reduced game space (tgo, Z) into two regions of different 

strategies, as can be seen in Fig. 2.  
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Fig. 2.  Decomposition of the reduced game space 

 

 These regions are separated by the pair of optimal boundary trajectories 

denoted respectively by Z*+ and Z*-, reaching tangentially the Z = 0 axis at (tgo)s, 

where (tgo)  is the non zero root of the equation dZ/dts go = 0. One of the regions is a 

regular one, denoted by D1, where the optimal strategies of the players are of the 

“bang-bang” type 

                             u* = v* = sign {Z}   ∀   Z ≠ 0                        (19 ) 

u and v being the normalized  controls of the pursuer (interceptor) and the evader (the 

maneuvering target) respectively. The explicit expression for Z is 

  

 Z = x1 + x2 tgo − ∆ZP + ∆ZE  (20) 
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where 

 ∆ZP = x3 (τP)2 [exp(−θP) + θP − 1] (21) 

  ∆ZE = x4 (τE)2 [exp(−θE) + θE − 1] (22) 

while θP = tgo/τP and θE = tgo/τΕ . 

 
 The value of the game in this region is a unique function of the initial 

conditions. The boundary trajectories themselves also belong to D1. Inside the other 

region, denoted by D0 , the optimal strategies are arbitrary and the value of the game 

is constant, depending on the parameters of the game (µ, ε). If the parameters of the 

game are such that µε ≥ 1, then the only root of the equation dZ/dtgo = 0 is zero and 

the value of the game in D0 is also zero. (Note that the “bang-bang” strategies (19) are 

also optimal in D0). The practical interpretation of the game solution is the following: 

(i) the optimal missile guidance law can be selected as (19) during the entire 

endgame;  

(ii) the worst target maneuver is a constant lateral acceleration starting not later 

than (tgo)s;  

(iii) the guaranteed miss distance depends on the parameters (µ,ε) and can be 

made zero if µε ≥ 1. 

 

 In this case, D0, which includes all initial conditions of practical importance, 

becomes the "capture zone" of this perfect information game. Implementation of the 

optimal missile guidance law, denoted as DGL/1, requires the perfect knowledge of 

the zero effort miss distance, which includes also the current lateral acceleration of the 

target. 
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3.2. DGL/E  

 The second model is also a planar perfect information game, but with time 

varying velocities and maneuverabilities. The maneuver plane in this model is the 

vertical plane, allowing variations also in altitude (and consequently in air density). In 

this game, assumption (ii) is replaced by assuming that profiles of these variables are 

known along a nominal trajectory.  

 

 Such a model is the suitable one for the analysis of a realistic BMD endgame 

scenario. The solution of this game [11, 20], is qualitatively similar to the previous 

one (DGL/1), but depends strongly on the respective velocity/maneuverability profiles 

of the players and obviously, the value of µ is not constant. Due to the time varying 

profiles, the expressions of the zero effort miss distance, as well as of (tgo)s and the 

guaranteed miss distance, become more complex.  

 

 In spite of this (algebraic) complexity, the implementation of the optimal 

missile guidance law, denoted as DGL/E, doesn’t present essential difficulties. It 

requires, of course (in addition of the perfect knowledge of the current lateral 

acceleration of the target), the velocity and maneuverability profiles in the endgame 

that can be precalculated along a nominal trajectory. 
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3.3. DGL/C 

 As mentioned earlier, the implementation of the perfect information guidance 

laws DGL/1 and DGL/E require the knowledge of the target lateral acceleration. 

Since this variable cannot be directly measured, it has to be estimated based on noise 

corrupted measurements. If the pursuer uses DGL/1, derived from the perfect 

information game solution [33] the evader can take advantage of the estimation delay 

and achieve a large miss distance by adequate optimal maneuvering [34], as seen in 

by the red curve in Fig. 3, even if the game parameters are such that the guaranteed 

miss distance should be zero.  
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Fig. 3.  Homing performance of DGL/1 and DGL/C against “bang-bang” target 

maneuvers 
  

 Fig. 3 represents the average miss distance of 100 Monte Carlo simulation 

runs as a function of the direction reversal timing (switch) in the target maneuver. The 

data used for these simulations are given in Table 1.  
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Table 1.  Horizontal end game parameters 

 
 

 

Parameter Value 

Interceptor velocity VP = 2300 m/sec 

Target velocity VE = 2700 m/sec 

Interceptor lateral acceleration limit aP
max = 20 g 

Target lateral acceleration limit aE
max = 10 g 

Time constant of the interceptor τP = 0.2 sec 

Time constant of the target τE = 0.2 sec 

Initial end game range R0 = 20 km 

Duration of end game engagement tf = 4 sec 

Measurement noise σang = 0.1 mrad 

 
 

 

 In the simulations a typical Kalman filter [35], augmented with a shaping 

filter, was used. Such a shaping filter, driven by a zero mean white noise represents 

random target maneuvers [36]. The shaping filter selected for this case was based on 

an exponentially correlated acceleration (ECA) model, suggested by Singer [37]. Such 

a shaping filter has first order dynamics with two tuning parameters, the correlation 

time of the maneuver τs and the level of the assumed process noise, expressed by its 

standard deviation σs = aE
max/Cs.  In this example the parameters of the shaping filter 

were τs = 1.5 s and Cs = 2.   

 
 The main reason for the degraded homing performance is the inherent delay 

introduced by the convergence time of the estimation process. Based on this 

observation, a rough approximation of the estimation process assumed that the 

evader’s lateral acceleration is a delayed (perfect) outcome by τest, while the 
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estimation of the other state variables is ideal. This modeling assumption allowed a 

deterministic analysis and a new pursuit-evasion game was formulated and solved. 

The solution of this planar “delayed information” game [14 -16], assuming for the 

sake of simplicity constant velocities and lateral acceleration bounds, was based on 

the idea of reachable sets [38] suggested for such problems. In order to compensate 

for the estimation delay (τcomp = τest),  this approach suggested that the zero effort miss 

distance Z is replaced by the center of the uncertainty set created by the estimation 

delay, denoted as Zc. The explicit expression of Zc is 

 

    Zc = x1 + x2 tgo − ∆ZP + (∆ZE)c,                        (23) 

where 

                (∆ZE)c = ∆ZE exp (- τest/τE).                                     (24) 

 

The decomposition of the reduced game space (tgo, Zc) seems qualitatively 

similar to Fig. 2. The solution yielded a guidance law, denoted as DGL/C, which 

compensates (at least partially) for the inherent estimation delay [14-16]. A 

deterministic analysis [14] showed that using this guidance law a substantial reduction 

of the guaranteed miss distance can be achieved, but the guaranteed miss distance 

cannot be reduced to zero. It is a monotonically increasing function of the estimation 

delay divided by the time constant of the evader (δ = τest/τE).  

 Testing this guidance law in a noise corrupted endgame scenario [17], using 

an estimator with the shaping filter parameters τs = 0.4 s, Cs = 1 and the time delay to 

be compensated set to τcomp = τest = 0.2 sec, indeed confirmed a substantial reduction 

of the “worst case” miss distance compared to DGL/1, on the expense of increased 

miss distances in the range of  1.6 sec < (tgo)sw < 4.0 s (where DGL/1 yielded excellent 
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precision), as shown in Fig. 3 by the green curve. Moreover, if the timing of the 

eventual change in the direction of the target maneuver is assumed to be uniformly 

distributed, the reduction in the average miss distance is not as impressive. 

 

 The practical difficulty in implementing DGL/C is to determine the value of 

τest to be used in the expression of Zc. This value depends on both the structure and 

the parameters of the estimator, as well as on the measurement noise model. For a 

given estimator and noise, the value of τest that optimizes the miss distance 

distribution against the “worst” target maneuver has to be found by a min-max search 

using off-line Monte Carlo simulations. 

   

3.4. DGL/EC 

The two different improvement features, developed using planar linearized 

interception models (DGL/E with perfect information and time varying velocities, 

DGL/C with constant velocities and delayed information), were integrated into a 

single (planar) guidance law denoted as DGL/EC [22]. This planar guidance law was 

implemented in two perpendicular guidance channels of a roll-stabilized interceptor 

missile and tested in simulations of a generic but realistic noise corrupted nonlinear 

ballistic missile defense scenario by using a suitable three-dimensional estimator.  

 

The simulation results confirmed an additional homing performance 

improvement compared to either DGL/E or DGL/C. However, the guaranteed homing 

accuracy was not sufficient for a “hit to kill” for two reasons. The estimation delay 

was only partially compensated and the residual estimation error was neglected in the 

deterministic analysis. For an improved homing performance, both the estimation 
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delay and the variance of the converged estimation error have to be reduced. 

Therefore, further investigations, using extensive simulations, had to be aimed to 

search an improved estimation scheme suitable to the interception endgame problems, 

which became the goal of the AFOSR Contract No. F61775-01-C-0007. The next 

section outlines the problems involved in reaching this goal. 

 

4. Estimation 

 
4.1. Estimators and shaping filters 

As indicated in subsection 2.2, it is assumed that the interceptor measures 

range and range rate with good accuracy, allowing a computation of the time-to-go. 

However, the measurements of the line of sight angle, carried out at the frequency of 

100 Hertz, are corrupted by a zero mean white Gaussian angular noise with a given 

variance. The interceptor’s own acceleration is accurately measured, but the target 

acceleration has to be estimated, based on the available measurements.  

 

In the framework of AFOSR Contract No. F61775-01-C-0007 several different 

types of discrete time estimators were tested. The family of estimators was based on 

the well known “classical” Kalman filter (KF) [35] with a zero mean white noise 

driven shaping filter (SF) representing the random target maneuvers [36].  Several 

types of shaping filters corresponding to different target maneuver models were used.  

 

One of the models assumes maximum maneuver with random starting time 

(RST). The RST/SF is an integrator driven by zero mean white noise. The spectral 
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density of the noise is proportional to the square of the maximum target lateral 

acceleration and inversely proportional to the duration of the endgame:  

( )
f

2
Er2

r t
aC

max=σ , where Cr is a tuning parameter.  This estimator turns out to be 

unbiased and its delays in estimating the relative lateral velocity and the lateral target 

acceleration are proportional to the value of the tuning parameter Cr. 

 

 The other model is the exponentially correlated acceleration (ECA) model of 

Singer [37]. The ECA/SF has first order dynamics with a time constant τs, inversely 

proportional to the assumed average frequency of target maneuver switches. The 

value of τs serves as a second tuning parameter (in addition to the factor Cs  defined 

by σs = aE
max/Cs). It turns out that in this filter (particularly when used to estimate 

“bang-bang” type maneuvers) the estimation delay is proportional to the value of τs. 

Moreover, the filter provides biased estimates of the relative lateral velocity and the 

lateral target acceleration. For both variables, the magnitude of the estimated 

variables is smaller than the actual ones. The biases are inversely is proportional to 

the value of τs. 

 

Since one type of the tested random maneuvers is sinusoidal, a periodical 

shaping filter (PSF) of second order dynamics [36], tuned to an assumed frequency 

ωf , was also used in some of the simulations. In this filter the spectral density of the 

noise is proportional to the square of the maximum target lateral acceleration and the 

proportionally factor (1/Cp) serves as a second tuning parameter. 
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4.2. On optimal estimation 

In the search of a suitable optimal estimator for the task of intercepting 

randomly maneuvering targets, several difficulties have been encountered. The basic 

one has been of a conceptual nature. For linear systems with zero-mean, white and 

Gaussian measurement and process noises, the Kalman filter [35], based on the 

correct model of the system dynamics, is known to be the optimal estimator in the 

sense of minimum variance of estimation error. The measurement noise used in 

interception simulations has indeed such characteristics, but the representation of a 

random target maneuvers as the output of a “shaping filter” driven by a zero-mean, 

white, Gaussian noise [36] is only an approximation. Moreover, each type of target 

maneuver requires a different “shaping filter” approximation. Since target maneuver 

dynamics is not ideal, the target acceleration is a state variable, a part of the 

interception model. The disturbance inputs are the random acceleration commands 

and can be discontinuous, representing a random jump process. They are bounded and 

certainly neither white nor Gaussian.  

 

 In several recent papers [39-40], it was shown that in such cases the optimal 

estimator is of infinite dimension. Thus, every computationally feasible (finite 

dimensional) estimator can be, at best, only a suboptimal approximation and the 

search for a feasible optimal estimator associated with interceptor guidance is not a 

well-posed problem. Similarly, it should be of no surprise that the Certainty 

Equivalence Principle and the associated Separation Theorem, both involving the 

concept of optimality, are not valid for the interception of randomly maneuvering 

targets. Not being able to rely on separate optimization of the estimator and the 

guidance law, one should search for efficient feasible approaches. 
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In cases where the Certainty Equivalence Principle cannot be proven, a 

“partial” separation property was asserted [41], stating that the estimator can be 

designed independently of the controller, but the derivation of the optimal control 

function has to be based on the conditional probability density function (conditioned 

on the measurement history) of the estimated state variables. Unfortunately, a 

rigorous practical approach implementing this idea has not yet been developed and 

applied in any known control design including guided missiles. An attempt in this 

direction was made in the development of the guidance law DGL/C [14-16], partially 

compensating the estimation delay, but this was only an approximation that neglected 

the stochastic features of the problem caused by the effects of the noisy 

measurements, namely the variance of the residual (converged) estimation error. 

   

The requirements to reduce both the estimation delay and the variance of the 

converged estimation error, mentioned earlier, are contradictory. The convergence 

time associated with identifying a rapid target maneuver change is composed of the 

maneuver detection time and the estimator’s response time. Short detection time 

comes at the price of high false alarm rate, while short response time requires large 

bandwidth, generating large estimation errors. Good filtering, providing a small 

estimation error variance, requires narrow bandwidth leading to a slow response.  

 

This controversy has raised the question: Can a single estimator satisfy the 

contradictory requirements of homing accuracy? In the absence of available theory, 

the answer was sought in extensive Monte Carlo simulations [42]. Theses simulation 

studies lead to conclude, as was summarized in the reports of the first year (ITR1 and 

ATR1), that no estimator is globally optimal for all guidance laws/interception 
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scenarios and there is no unique “optimal” estimator/guidance law combination for all 

feasible target maneuvers.  The answer on the above raised question being negative, a 

new approach had to be developed. This approach has been based on an integrated 

estimation/guidance design [43] pursued in the consecutive phases of the research 

program involving multiple model estimators [44-45]. In the next section the results 

obtained during the three years of the investigation effort, as presented in the different 

Technical Reports, are summarized.   

 

5. Previous Results 

 
The first year of investigations in the framework of AFOSR Contract No. 

F61775-01-C-0007 was devoted to exploring and understanding how different 

combinations of estimators and guidance laws affect the guaranteed homing 

performance. In this phase on an extensive parametric study, using a planar constant 

speed model was performed. Based on the results obtained in the first year, the 

research effort in the second and third years was oriented to develop a suitable 

integrated estimation/guidance design that has the potential of achieving hit-to-kill 

homing accuracy. In addition to planar constant speed simulations, a generic three-

dimensional BMD scenario was also used.   

 
 
5.1. First year (October 2001-September 2002) 
 
5.1.1. ITR1. (October 2001-March 2002) 

The very large number (more than 100,000) of Monte Carlo simulations 

performed during this period concentrated on the “worst” case homing performance 

against the “worst” feasible target maneuver. Based on the results of the perfect 
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information game solutions and earlier simulation studies, the target maneuver was 

assumed to be of the “bang-bang” type with random timing and the “worst” timing of 

the maneuver command change was identified. The homing performance was 

characterized by the cumulative miss distance distribution, based on 100 Monte Carlo 

simulation runs, against this “worst” target maneuver. The main results of these 

simulations, expressed by the values of r95 (indicating the largest miss distance of 95% 

of the samples) were the following: 

1, The simulation results provided an experimental demonstration that for the 

interception of a randomly maneuvering target the Certainty Equivalence property 

and the associated Separation Theorem are not valid. The guidance law derived from 

the perfect information game solution (DGL/1) is not optimal in a noise corrupted 

measurements scenario, where an estimator is incorporated in the guidance loop. 

Other guidance laws, such as DGL/C and in some cases even DGL/0 [46−47] (a 

guidance law that assumes ideal target dynamics, i.e. τΕ = 0,), have better homing 

performance.  

2, The homing performance of the delay compensating DGL/C is superior (as 

could be expected) to the other guidance laws, but a “hit-to-kill” accuracy against a 

10g target maneuver (with 20g own lateral acceleration limit and angular 

measurement noise level of σa=0.1 mrad) cannot be achieved. 

3, The derivation of DGL/C, associated with finding τcomp the delay 

compensation term of the guidance law, turned out to be rather complex. For a given set 

of estimator tuning parameters, the best value of τcomp can be found. However, the very 

value of τcomp affects the selection of the best tuning parameters for a given estimator 

structure. Finding the best combination has required a simultaneous min-max search in 

the joint estimator/guidance law parameter space. 
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  4, The ensemble average of the estimation error in the “worst” case was also 

evaluated. From the ensemble average of the estimator output data one can observe 

that there is a delay not only in the estimated lateral target acceleration, but also in 

the estimated relative lateral velocity. Moreover, the estimation delay of this state 

variable is not the same as the estimation delay of the lateral target acceleration and 

neither of these delays remains constant during the endgame. 

5, The relationship between the actual estimation delay in detecting a change in 

lateral target acceleration (as it is measured from the ensemble average of the estimator 

data) and the best value of τcomp used in the DGL/C guidance law is not clear. The best 

value of τcomp doesn’t have either a direct relationship with the predicted value of the 

minimum time needed to detect target maneuver change [48-49].  

6, It is also observed that using DGL/C the difference between the homing 

performances of the various estimators is much smaller than with the other guidance 

laws, because DGL/C corrects, at least partially, the deficiencies of the estimators.  

7, The cumulative distribution of the “worst” case miss distances (for a given 

estimator and guidance law combination) can be approximated as the sum of two 

parts: a “deterministic” minimal miss distance, due to the partially compensated 

estimation delay, and a random part with a Rayleigh type probability distribution. 

Such distribution is characterized by a single parameter, which can be associated with 

the variance of the residual (converged) estimation error. Both values are monotonic 

functions of the measurement noise variance, depending on the estimator model and 

its parameters.  

 

The detailed results of ITR1 are presented in Appendix A. 

 

 29



5.1.2. ATR1. (April - September 2002) 
 

In this period of March 2002 to September 2002 a new set of Monte Carlo 

simulations was performed, intending to test and compare the homing performance of 

several estimator/guidance law combinations with two measurement noise levels                 

(σa = 0.1/0.2 mrad) and different maneuverability ratios (1.5 ≤ µ ≤ 3.0) against two 

types of random target maneuvers:  

 (i) a “bang-bang” maneuver randomly switched during the interception 

endgame; 

 (ii) a sinusoidal maneuver with random phase, representing the planar 

projection of a three-dimensional “spiral” maneuver [50]. 

 

Based on these simulation results and those of ITR1, all assuming planar 

constant speed scenarios, a set of new conclusions were reached. 

 

1, The simulations confirmed that against a randomly switching “bang-bang” 

type maneuver, DGL/C is the best of the known guidance law. However, the homing 

performance using this guidance law strongly depends on the type and the parameters 

of the estimator incorporated in the guidance loop. 

 

2, The two-dimensional simulations against sinusoidal maneuvers with 

random phase, representing the planar projection of a three-dimensional “spiral” 

maneuver [50], showed that such maneuvers are less demanding, from the 

interceptor’s point of view, than “bang-bang” type maneuvers. The reasons are the 

lower maneuver energy compared to a “bang-bang” maneuver of the same maximal 
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amplitude and the gradual change in the acceleration command. (In the three-

dimensional case, investigated in the framework of AFOSR Contract No. F61775-01-

WE018, the maneuvering energies of the two maneuver types were the same. Thus, in 

a three-dimensional interception scenario some “spiral” maneuver created larger miss 

distances than a “bang-bang” type when for both the same estimator/guidance law 

combination, -the best against the worst case “bang-bang” maneuver,-  was used.) 

 

3, It was also demonstrated that against sinusoidal maneuvers a much better 

homing performance can be achieved if the estimator uses a matched periodical 

shaping filter (PSF) instead of the one used against the “bang-bang” maneuver. 

Moreover, against sinusoidal maneuvers the guidance law DGL/1 has better homing 

performance than DGL/C.  

 

4, The sensitivity of the homing performance against sinusoidal maneuvers to 

the mismatch between the maneuver frequency and the periodical shaping filter can 

be reduced at the expense of slightly worse minimum average miss distance. If the 

maneuvering frequency is completely unknown, an estimator with ECA shaping filter 

can serve as a compromise. 

 

5, Based on the above findings, it seems necessary to use some kind of 

multiple model estimator [44-45], which can identify the maneuver type and select the 

best one from a family of assumed estimators. 

 

The detailed results of ATR1 are presented in Appendix B. 
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5.2.Second year, (October 2002-September 2003) 

5.2.1. ITR2. (October 2002-March 2003)  

 Based on the conclusions obtained from earlier results in this year the research 

effort was focused on developing a suitable integrated estimation/guidance design that 

leads to an improved accuracy. Since no estimator is globally optimal for all guidance 

law/interception scenarios and there is no unique “optimal” estimator/guidance law 

combination for all feasible target maneuvers, the initial phase of the endgame has to 

be devoted to identifying the type of target maneuver using a multiple model 

estimator [44]. It was assumed that the target can perform one of the following 

maneuver options: 

(i) no maneuver, 

(ii) a continuous sinusoidal maneuver of a given frequency with a random phase, 

(iii) a constant maximum lateral maneuver with a random initiation time, 

(iv) a maximum lateral maneuver to one side, switching at a random time to the 

opposite side. 

 

 It was found that, for this purpose, a classical, static (non interactive), multiple 

model adaptive estimation (MMAE) approach is suitable. As long as the target 

maneuver has not been identified, the objective of the guidance law should be to 

correct the initial errors. During that initial phase, since the target maneuver is 

uncertain, a guidance law that does not require the knowledge of target maneuver, 

such as DGL/0, was used. Once the target maneuver model has been identified, the 

guidance has to be switched to DGL/1 with the best available estimator corresponding 

to the identified maneuver model. 
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 In the case where a constant (including zero) maneuver is identified, DGL/1 

with a narrow bandwidth estimator (that minimizes the variance of the converged 

estimation error) can guarantee small miss distances, if either the maneuver remains 

constant, or an eventual direction switch takes place early enough (before a critical 

time-to-go is reached), as shown in Fig. 3 in subsection 3.3. In such cases, the effect 

of the inherent estimation delay becomes negligible.  If a target maneuver command 

"jump" has been identified before the critical time-to-go (1.6 sec in the example 

shown in Fig. 3), the probability for an additional jump to occur before the end 

becomes very low, because the target designer has no interest in too frequent 

maneuver changes that cannot create large miss distances.  Thus, in this case using 

DGL/1 should continue.   

 

 If until the critical time-to-go no maneuver command "jump" has been 

identified, the guidance law was switched to DGL/C in order to avoid large miss 

distances that are created by DGL/1 if a "jump" in the target maneuver command 

occurs later. The homing performance of this guidance law can be improved if the 

estimator is tuned to assume a step change in the maneuver command at a preselected 

time-to-go. A few (3 in the simulation example) preselected tuned estimators covered 

the range of interest. Implementation of this idea required an innovative use of the 

time-to-go in the estimator selection, not known to be used in other works. 

 

 In the case of sinusoidal target maneuvers it was observed that if the maneuver 

frequency used in the PSF estimator is correct, excellent homing performance can be 

obtained using DGL/1 as a guidance law. Moreover, if the estimation error 

(depending on the frequency mismatch of the estimator’s shaping filter) is not too 
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large, the homing performance is still acceptable. If the process noise level used in the 

PSF estimators is not too low a few shaping filters of different frequencies cover 

reasonably well the domain of expected maneuver frequencies.  

 

The simulation results, carried on separately for "bang-bang" type maneuvers 

assuming uniformly distributed random "jump" and for sinusoidal maneuvers with 

uniformly distributed random phase, were very encouraging. The performance 

improvement achieved by the use of the time-to-go information against randomly 

switched "bang-bang" target maneuvers is outstanding. The new approach preserves 

the excellent performance of DGL/1 until the critical time-to-go (in about 60% of the 

runs). In addition, by using the tuned estimators associated with DGL/C, the method 

provides improved performance as compared to earlier results with a non-tuned 

estimator, as can be seen in Fig.4. 

Fig. 4. Cumulative miss distance probability distribution against randomly switching 
“bang-bang” target maneuvers 
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The new approach preserves the excellent performance of DGL/1 until the 

critical time-to-go (in about 60% of the runs). In addition, by using the tuned 

estimators associated with DGL/C, the method provides improved performance as 

compared to earlier results with a non-tuned estimator.  The improvement is also 

expressed by the average miss distances of the 500 Monte Carlo runs, being 0.57 m 

for the new approach, compared to1.16 m for DGL/C and 2.40 m for DGL/1.  

  

 The results against sinusoidal random phase maneuvers were even better, as 

can be seen in Fig. 5.  The required kill radius for 0.95 kill probability against such 

maneuvers is only about 0.5 m, as compared to a much higher value (about 2 m) 

against bang-bang maneuvers, and the average miss distance is only 0.19 m.   

 

Fig. 5. Cumulative miss distance proba ility distribution against random target 
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5.2.2. ATR2. (April - September 2003) 
  

 The results presented in ITR2 showed excellent performance against random 

ph e 

 

as periodical maneuvers in a wide frequency range. The homing performance 

against “bang-bang” type maneuvers with a random switch was also improved, 

compared to earlier results, but a potential of further improvement was also observed. 

In the second part of the contract's second year the investigation effort was oriented to 

exploit this improvement potential. The improvement potential of the interceptor 

homing performance is explored by a different implementation of the multiple model 

adaptive estimation/guidance concept, based on explicit use of the time-to-go and the 

properties of a “tuned” estimator. The first phase in this direction was to evaluate the 

homing performance of DGL/1 with several “tuned” estimators for different timings 

of the switch in the target acceleration command. The estimators for this evaluation 

used ECA shaping filters with a relatively large bandwidth (τs = 0.2 sec and Cs = 3).    
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Fig. 6. Homing performance with “tuned” estimators 
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 The resu s of 100 Monte 

f t

ig

 These results indicated that if the identified target maneuver in the initial 

ph e 

ation/guidance concept was tested by extensive Monte Carlo 

simula

lts presented in Fig. 6 show the average miss distance

Carlo runs for three different values of (tgo)sw, (the time instant of the target maneuver 

command change in the sensitive zone near the end) as a function of ∆(tgo)sw, (the 

difference between the “tuning time” of the estimator and the true value o  ( go)sw). 

Positive values of ∆(tgo)sw  indicate that the estimator is tuned for an earlier switch 

(larger time-to-go). This f ure shows miss distances of the order of a few cm and a 

surprisingly excellent robustness, allowing to use only very few “tuned” estimators.  

 

as is constant, then in the new estimation/ guidance strategy DGL/1 has to be 

preferred over DGL/C. Assuming that the event of the "jump" in the target 

acceleration command can be detected sufficiently fast, the robustness property 

displayed in Fig 6 suggested that after the critical time-to-go (as soon as the jump in 

the direction of the target maneuver command is detected) the narrow bandwidth 

estimator, providing the input of DGL/1, be replaced by the nearest (earlier) “tuned” 

wide bandwidth version. Three “tuned” estimators (tsw = 1.5, 1.0, 0.5 sec) covered the 

range of interest.  

 

 This new estim

tions for every 0.1 sec of (tgo)sw within the 4 sec duration of the benchmark 

endgame, using 100 noise samples for each. The results, based on the assumption of 

ideal detection, are indeed excellent. Fig. 7 displays the cumulative miss distance 

probability distribution, which is very close to satisfying the hit-to-kill requirement.  
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Since an ideal detection of the jump in the direction of the target maneuver 

command is not feasible, the Monte Carlo simulations were repeated assuming small 

detection delays of 0.05 and 0.1 sec. The cumulative miss distance probability 

distributions for these two cases together with the earlier results (of Fig.4) are also 

shown in Fig.7. 
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hile for a detection delay of ∆td = 0.05 sec there was only a slight 

degrad

Fig. 7. Cumulative miss distance probability distribution against randomly switched 
“bang-bang” target maneuvers  

 

W

ation of the homing performance, for ∆td = 0.1 sec the degradation was more 

meaningful, mainly for maneuver switches near to the end of the interception. These 

results strongly emphasize the need for a fast “jump detector”, which has to be 

developed. However, even in this case the improvement of the homing performance 
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compared to earlier results is substantial, as seen in Table 2, presenting the average 

miss distance (rav), the maximum miss distances for 95% and 99% of kill probabilities  

(r

 

Table 2: Homing performance summary 

∆td [s] rav [m] r95 [m] r99 [m] p0.5m [%] 

95, r99) and the kill probability for a warhead lethality radius of 0.5 m (p0.5m). 

 

 

0  0.095 0.22 0.34 99.6 
0.05 0.10 0.25 0.50 99.1 
0.1 0.25 1.57 2.21 87.9 

ITR2 0.57 2.14 3.51 62.3 

 

or periodical maneuvers the adaptive estimation/guidance strategy, as well as 

the h

5.3 Third year (October 2003-September 2004) 

F

oming performance, remained the same as reported in ITR2. 

 

5.3.1. ITR3. (October 2003-May 2004) 

 Encouraged by the performance improvement achieved in the previous year 

different elements within a corporate estimation system.  

and acknowledging the uncertainty about the practical value of the “jump” detection 

delay, the new approach of logic based integrated estimation/ guidance algorithm (as 

it was called in the sequel) was redefined using a system viewpoint. It was decided 

that since no single estimator can satisfy the requirements of homing accuracy, the 

different tasks performed by a classical estimator have to be separated and assigned to 
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The main task, directly affecting the homing accuracy, is the estimation of the 

state variables (including the target acceleration) involved in the guidance law. This 

task ca

 of the interception, 

there is sufficient time for the low bandwidth filter to converge and provide the 

correct

here each model 

assume  a different timing of the switch, was described. Using such an estimator 

“tuned” to the correct switch, e. g. (tgo)sw = 1.0 s, eliminates the delay and yields 

n be performed in a satisfactory manner by a narrow bandwidth filter, if (and 

only if) the correct model of the target maneuver is available. Thus, the first task to be 

carried out (at the beginning of the endgame) is model identification using a multiple 

model structure [44]. The filters for this task should be of a large bandwidth, to be 

able performing fast model identification.  

 

In a planar scenario a random “bang-bang” type maneuver is the most 

effective for evasion, thus the “model” has to include the direction of the current 

target acceleration. Moreover, another (large bandwidth) estimator has to perform the 

detection of the direction reversal (switch) that is anticipated. This is an additional 

task that requires a special estimator, which has to be developed. 

 

 If the “jump” occurs sufficiently far away from the end

 new value to the guidance law. Thus, if an early “jump” has been detected fast 

enough, the low bandwidth state estimator can be maintained. As was shown by the 

red curve on the Fig. 3, the guidance law DGL/1 using the correct value of the target 

acceleration achieves small miss distances. However, if the “jump” occurs near the 

end very large miss distance is created due to the estimation delay.  

 

In an earlier paper [45] a multiple model estimator, w

d
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excellent homing performance as can be seen in Fig. 8 from the cumulative 

probability distribution of the miss distances obtained from 100 Monte Carlo runs. 

The robustness of such “tuned” estimators was already shown in Fig. 6. 
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Fig. 8. Cumulative miss distance distribution of DGL/1 with a  
perfectly “tuned” estimator 

 

 

Ba

estimation/guidance strategy was defined as an explicit function of the time-to-go: 

1, At the beginning of the endgame (after achieving a “lock-on” the target) a 

multipl

od 

guid

sed on the results shown in Figs. 3 and 8, the following logic based 

e model estimator identifies whether the target maneuver is either quasi-

constant or time varying (most probably periodical). During this identification peri

ance is carried out by DGL/0.  
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2a, If a quasi-constant maneuver was identified, the next step is determining the 

maneuver direction and its (rough) magnitude. 

g the frequency range.  

timator (ECA 

or P

ed at or after the 

crit

is logic based integrated 

estimation/ guidance algorithm without the "jump" detection filter, which has not 

been y   

 guidance 

law. The first one was based on increasing the lateral acceleration command, when a 

2b, If a time varying maneuver was identified, assuming that is a part of a 

periodical maneuver, the next step is determinin

2c, After the identification of the maneuver direction or the frequency range of 

the assumed periodical maneuver, the appropriate narrow band state es

SF) is selected for state estimation and the guidance is carried out by DGL/1.  

2d, In the case of quasi-constant maneuvers a special (fast) “jump” detection filter 

is used in parallel with the narrow bandwidth (ECA) state estimator.  

 3, If a “jump” has been detected before the critical time-to-go, the narrow 

bandwidth estimator is kept until the end. If a “jump” has been detect

ical time-to-go, the narrow bandwidth estimator is replaced by the nearest (earlier) 

“tuned” wide bandwidth version (ECA) state estimator.  

 

The simulation results obtained by using th

et developed, were plotted in Fig.7 for several (assumed) detection delays    

(0, 0.05, 0.1 sec). In spite of the substantial improvement compared to earlier results, 

the homing performance in the case of 0.1 sec detection delay is not yet satisfactory. 

It was observed that if the "jump" occurs during the last phase of the interception, the 

interceptor is unable to reach its maximum lateral acceleration in the remaining short 

time and to correct the guidance error generated during the detection delay. 

 

This deficiency was corrected by two intuitive modifications of the
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maximum maneuver is needed due to the detected change of the target maneuver 

direction, for small values of time-to-go (tgo < 3τP). The increase in the commanded 

acceleration gain is expressed for tgo ≤ (tgo)sw by  

 ( ) .
exp1

sign
, == go

c
p

c
p ktaa

max

⎟
⎠

⎞
⎜
⎝

⎛−−
P

go

p

tk

Za

τ
 (25) 

here the parameter k is selected to satisfy  

 

w

 ( ) .a|k, max
Pf =  (26) 

Its value, which must be less than 1, otherwise the gain will be infinite, depends on 

(tgo)sw and the value of aP at that very moment. 

The second modification was to replace the sign function in the DGL/1 

guidance law within the period when the “tuned” estimators are used by a time 

varying

           (27) 

 

 where Adz is the initial amplitude and bdz is exponential decay rate of the dead zone. 

This modification reduces the error created during the period of estimation delay as 

 

⎧

−−≤
−−>

)),(exp(||,0
)),(exp(,0.1

go

go

ttbAZ
ttbAZ

fdzdz

fdzdz

ta| p

 dead zone version  

           

     ⎪
⎨= .0)(sign Zdz

illustrated in Fig. 9. The dead zone was used only in the interval 1.0 s > tgo >  0.2 s 

until the switch is detected. In the simulations the values of Adz = 50 m and bdz = 1/s 

were selected.  

⎪
⎩ −−−<− )),(exp(,0.1 gottbAZ fdzdz
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By applying both modifications (25) and (27) the homing performance is 

indeed improved, as can be clearly seen in the cumulative distributions in Fig. 10. 

 

 

 

 

 

 

Fig. 9. The effect of time-varying dead zone 
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Fig. 10. Cumulative miss distance distributions with guidance law modifications  
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In Table 3 different figures of merit for the homing performance (the average 

miss distance rav, the maximum miss distance for 95% of kill probability r95, as well 

as p0.5m, the kill probability for a warhead lethality radius of 0.5 m) of the horizontal 

constant speed interception endgame are summarized.  

 

Table 3. Horiz 

 

 

 

 

 

nsional 

ru cal ballistic missile 

aerodynamically contro le in p  r t can  either horizontal or 

“spiral” maneuvers. The interceptor was a cruciform aerodynamically controlled and 

roll-stabilized missile with solid rocket propulsion of two stages. Its maneuverability 

was limited by the  c ien ing endgame stared at a slant 

range of 20 km and t idance  w pted e varying parameters 

(DGL/E instead of DGL/1). The results, shown in Fig.11 and Table 4, indicate 

∆td [s] rav, [m] r95, [m] p0.5m, [%] 

ontal homing performance summary

 

 

The new logic based estimation/guidance st

0  0.095 0.22 99.6 

0.05 0.10 0.25 99.1 

0.1 0.23 1.47 88.5 

      0.1 & k 0.15 0.69 93.1 

0.1 & k + dz 0.10 0.30 98.1 

ITR2 0.57 2.14 62.3 

rategy outlined above (with 

increased terminal gain and dead-zone) was also tested in a generic three-dime

endo-atmospheric BMD scenario. The description and the data base of such scenarios 

are given in Appendix D. It was a nominal point defense scenario with a desired 

interception altitude of the 20 km. The target was a c ciform tacti

llab itch and oll tha  perform

 maximum lift oeffic t. The hom

 he gu  laws ere ada  to tim



similarly improved homing performance, as a function of the detection delay. These 

results were also presented at two conferences [30,31]. 
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Fig. 11. Cumulative miss distance distributions in a three-dimensional interc
 
 
 

Table 4. Three-dimensional homing performance summary 

∆td, [s] rav, [m] R95, [m] P0.5m, [%] 

0 0.12 0.20 99.8 

0.1 0.14 0.21 98.1 

0.2 0.25 1.43 91.6 

 

 

The above presented results demonstrated that applying the new integrated 

 in generic interception scenarios against logic based estimation/guidance algorithm
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randomly maneuvering targets a substantial homing performance improvement was 

achieved, compared to earlier results. The new approach also has a potential to satisfy 

a “hit-to-kill” requirement against the mos aneuvers.  

 

 Against " periodica uvers ing performance is even 

better. The crucial element for the su ul applica  of the new algorithm is the 

existence of a suf tly fast “jum tector. The developm f such a detector 

was not included in the original research program and it has to be the subject of an 

eventu  future investigation. 

t efficient "bang-bang" type m

spiral" ( l) mane  the hom

ccessf tion

ficien p” de ent o

al

  

5.3.2. (June- September 2004) 

  
 The results of the investigations performed in the last months of the contract 

and have not yet been reported are presented in the next section.  

 

 

 

 The investigation efforts of the last months of the contract concentrated on 

validating the logic based integrated estimation/ guidance algorithm, developed using 

a planar constant speed interception endgame model, in several generic three-

dimensional endo-atmospheric BMD scenarios. As mentioned earlier, the database for 

e simulation of such scenarios is given in Appendix D. The general description of 

is sce

 

6. Recent results 

 

th

th nario is presented in the following subsection. 

 47



6.1. Three-dimensional BMD

The investigated in ario is an endgame between an interceptor 

missile

 

 

eleration in the atmosphere and the lift 

to drag ratio at the trimmed angle of attack generating lift and the parameters of the 

rolling 

                

 scenario description 

terception scen

 launched against a maneuverable reentering tactical ballistic missile (TBM). 

For the sake of simplicity a nominal point defense scenario is considered, i.e. the 

surface target of the TBM is located in the vicinity of interceptor missile’s launch site. 

It is assumed that the TBM is launched from the range of 600 km on a minimum 

energy trajectory. It is detected in its reentry phase at the altitude of 150 km (slant 

range of 258 km, velocity of 1720 m/s and a flight path angle of -18.2o). The detailed

simulation of the TBM reentry trajectory starts with these initial conditions on a

nominal (non maneuvering) target trajectory.  

 

The TBM is a generic cruciform flying vehicle having aerodynamic control 

surfaces that can execute lateral maneuvers up to a given angle of attack in fixed 

(non-rolling) body coordinates. The simulation of the TBM motion is of 4 degrees of 

freedom, including in addition to the point-mass model also a rolling motion around 

the velocity vector. Due to eventual (or planned) lateral asymmetry, the reentering 

TBM also rotates (rolls) about its longitudinal axis and (having a non-zero trim angle 

of attack) follows a “spiral” type trajectory. However, it can also be roll stabilized, 

performing maneuvers in a predetermined plane. The TBM is characterized by its 

ballistic coefficient, which determines the dec

motion. These parameters are defined in Appendix D. 

 

The generic interceptor missile (designed by a group of students for high  

endo-atmospheric interception) has an aerodynamically controlled cruciform airframe 
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and is assumed to be roll stabilized. It has solid rocket propulsion of two stages. Each 

rocket motor stage provides a constant thrust. After the “burn out” of the first stage 

the booster is separated and the second rocket motor is ignited. The ignition of the 

second propulsion stage is delayed to allow maximum interceptor velocity at the end 

of the interception. The maneuverability of the missile (its lateral acceleration and the 

corresponding load factor) is limited, in each of the two perpendicular planes of the 

cruciform configuration, by the maximum lift coefficient. The interceptor's 

aerodynamic and propulsion data are presented in Appendix D. 

 

puted results of the 

subprogram and guided from the ground to reach the “nominal” interception point 

until the “lock-on” range of the interceptor’s seeker is reached. During that time the 

llowing also eventual maneuvers. Due to the 

differe

 

 

6.2. Midcourse precomputation 

When the TBM is detected, the defense system selects the desired altitude for 

interception and launches a guided missile towards the predicted point of impact at 

this altitude. In order to intercept the “nominal” target at the desired altitude a 

subprogram calculates the time of launching and the initial flight path angle of the 

interceptor. It also computes the appropriate delay for the ignition of the second stage 

rocket motor in order to maximize the interceptor velocity at the nominal interception 

altitude. The interceptor is launched according to the precom

target trajectory is simulated, a

nces between the precomputed (“nominal”) and the simulated (“real”) 

trajectories, the initial conditions of the interception end game are not “ideal” and the 

endgame starts with some initial error, as can be expected in reality. 
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6.3. Three-dimensional endgame simulations 

 

It is assumed that the homing endgame starts at a slant range of 20 km. Based 

on the available data the “nominal” velocity and maneuverability profiles of the 

interceptor and the TBM during the endgame, as well as the time varying 

interceptor/target maneuverability ratio µ can be computed, as shown in Figs. D.5-D.7 

in Appendix D for a nominal interception altitude of 20 km. It can be seen in Fig. D.7 

that during the endgame the maneuverability ratio µ, characterizing the interceptor 

advantage, is monotonically (almost linearly) decreasing. The entire endgame can be 

characterized by the final value of this parameter, denoted as µf. 

hree scenarios with different interception altitudes (20, 25 ,30 km) were 

simulat

  

T

ed. Results obtained in earlier studies showed that randomly switched "bang-

bang" maneuvers are the most effective. Thus, it was assumed that the TBM is roll 

stabilized and the maneuvers are executed in the horizontal plane. As in earlier 

simulations, it was assumed that the endgame starts with a target maneuvering to the 

right and at some random time during the endgame a command of maneuver direction 

change is given. The relationship between the TBM’s actual angle of attack and its 

commanded value was approximated by a first-order transfer function with a time 

constant τp = 0.2 sec.  

 

The interceptor missile used during the endgame the logic based 

estimation/guidance strategy outlined in detail in the previous section, but the 

guidance law used is DGL/E which is adapted to the nominal time varying parameters 

of the endgame. The narrow bandwidth state ECA estimator used in the planar 
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simulations remained unchanged. The parameters of the 3 "tuned" wide bandwidth 

ECA state estimators (τs and Cs)  were selected, based on a large set of Monte Carlo 

runs to optimize the homing performance. The interceptor’s autopilot was represented 

by a first-order transfer function with a time constant τp = 0.2 sec, as in the planar 

simulations. 

 

6.4. Sim

The fist step was to establish the parameters to be used for the selected 

interception scenarios, each aimed for a different altitude. The initial conditions of 

each scenario, obtained from the precomputations, are summarized in Appendix D, 

subsection D.3. The next step was to determine the parameters of the 3 "tuned" wide 

bandwidth ECA state estimators that optimize the homing performance for each 

nominal interception altitude.  A very large set of Monte Carlo runs, composed of 

1000 randomly selected maneuver switches during the endgame with independently 

every pair of fixed parameters (a total of 28000) were 

ed for each scenario. Based on these simulations it was established that within 

ogic based integrated estimation/ guidance algorithm the 

optima

 

ulation results 

selected noise sequences for 

perform

the framework of the l

l homing performance is quite insensitive to the values of these parameters, 

indicating the robustness of the algorithm. The optimal parameters turned out to be 

practically the same as in the planar simulations  (τs = 0.2 sec and Cs = 3). The homing 

performance measures are summarized in Table 5, where (due to the excellent homing 

performance) the kill probability for a warhead lethality radius of 0.3 m was used 

(instead of 0.5 m in Tables 3 and 4).  
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Table 4. Homing performance summary in three BMD scenarios 

 

 

 

 

 

 

 

 

 

 

 

 The cumulative miss distance distributions of the different scenarios are 

presented in Fig.12. 
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Fig. 12. Cumulative miss distance distributions three BMD scenarios 
 
 

The results indicate a slightly better homing performance for 25 km than for 

20 km, as well as some deterioration for an interception altitude of 30 km. These 

differences are probably due to the small differences in the maneuverability profiles 

of the scenarios. 
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In summary, one can say that using the logic based integrated estimation/ 

guidance algorithm the homing performance against randomly switched "bang-bang" 

maneuvers is uniformly excellent (almost "hit-to-kill")  in the of lower tier endo-

atmospheric interception altitude range of 20-30 km. The homing accuracy against 

random phase "spiral" maneuvers (as demonstrated earlier) is even better.  

 

 

7.  Concluding remarks 

 

From the content of this Final Technical Report one can obtain a clear view of 

the progress made during the three years of the contract (No. F61775-01-C-0007)

The nee  in the 

first phase. It was followed by a methodical investigation leading to the development 

of an innovative design approach for interceptor missiles using a logic based 

integrated estimation/ guidance algorithm.  The algorithm was based on three new 

ideas: 

1, Separation of the tasks of model identification, state reconstruction and abrupt 

change ("jump") detection and assigning each to different estimators.  

2, Explicit use of the time-to-go to select the appropriate estimator for providing 

guidance information. 

3, Modification of a differential game based bounded control guidance law 

(DGL/1) for enhancing its efficiency in the terminal phase. 

 

 The efficiency of the algorithm depends on the existence of a sufficiently fast 

"jump" detector. Since the development of such detector was not included in the 

. 

d for an integrated estimation/ guidance was established and justified
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origina

nt robustness with respect to scenario parameters. The homing performance in 

the 

miss distances 

 

rative. However, the data 

represent a rather pessimistic case. In the planar engagement a non-excessive 

int cep

   

 

l research program, its performance (the detection delay) was parameterized in 

the simulations.  

 

 The results of extensive Monte Carlo simulations demonstrated an exceptional 

homing performance improvement (depending on the detection delay) against 

randomly switching "bang-bang" maneuvers, compared to earlier results, and an 

excelle

three-dimensional scenarios is somewhat better than in the planar case, due to the 

higher time varying interceptor maneuverability advantage. The 

against random phase "spiral" maneuvers (as demonstrated earlier) are even smaller.  

 

Finally, a word of caution. The data used in the Monte Carlo simulations are 

generic and therefore the numerical results are only illust

er tor maneuverability advantage (µ = 2), a relatively agile target (ε = 1) and a 

conservative sensor noise (σang = 0.1 mrad) were assumed.  The “bang-bang” target 

maneuver, used in the simulations, is the most efficient one for avoiding interception.  
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Appendix A. Sections 6-7 ITR1/Part 2 
 

A.1.  Monte-Carlo simulation results 
 

A.1.1. Effects of filter parameters 
 
A.1.1.1. Estimation with ECA/SF 

 
The values of r95 (in meters), obtained in the simulations for the DGL/0 and 

DGL/1 guidance laws with the KF-ECA/SF (Singer) estimator, are given in Tables 

A.1 & A.2. The accuracy of these results, based on estimating both the numerical 

integration error and the statistical error of the 95% percentile (due to the finite 

sample), is of order of ± 10 cm. For this reason the results are given with a single 

decimal digit. 

 
Table A.1. Effect of ECA/SF parameters: DGL/0, σa=0.1 mrad, 

r95 [m] 
 

 
       Cs 

τs, s 
 

1 2 3 

0.2 4.6 5.0 5.7 
0.4 4.0 3.8 4.5 
0.6 3.8 3.6 4.4 
0.8 3.7 3.7 4.5 
1.0 3.6 3.7 4.5 
1.5 3.6 3.7 4.5 

 
 

Table A.2. Effect of ECA/SF parameters: DGL/1, σa=0.1 mrad, 
r95 [m] 

 
 

       Cs 

τs, s 
 

1 2 3 

0.2 3.2 3.8 4.6 
0.4 4.4 4.5 5.1 
0.6 5.0 5.1 5.8 
0.8 5.3 5.6 6.4 
1.0 5.5 5.9 6.7 
1.5 5.9 6.4 7.3 
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             It is seen that the influence of the filter time constant τs is different for each 

guidance law. For DGL/1 the best result is provided by the minimal value of τs. For 

DGL/0 the homing performance for small τs is the worst. With τs increasing it is 

slightly improves and stabilizes. This can be explained by the mutual effect of the 

estimation delay and bias. Increasing τs results in larger delay and smaller bias, but 

this influence is more serious in the estimate of the target acceleration in comparison 

with the estimate of the target velocity. For DGL/1, using the acceleration estimate, 

the effect of delay is more critical than the effect of bias. Therefore, the best results 

are obtained with this guidance law for the smallest value of τs. DGL/0 takes into 

consideration only the velocity estimate and consequently the influence of τs is 

weaker. The effect of the coefficient Cs (the process noise standard deviation is given 

by σs = aE
max/Cs) is similar but not identical for these two guidance laws. In the range 

of parameters considered in the report he value of r95 decreases monotonically with Cs 

decreasing.  

 

A.1.1.2. Estimation with RST/SF 

The values of r95 [m] with the RST/SF estimator for different values of the 

parameter Cr are summarized in Table A.3 and represented in Fig. A.1. 

 
 

Table A.3. Effect of RST/SF parameter, σa=0.1 mrad, 
r95 [m] 

 

Cr
r95 

(DGL/0) 
r95 

(DGL/1) 
2 3.4 6.7 
4 4.4 5.9 
6 5.0 5.2 
8 5.8 5.4 
10 6.3 6.3 
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Fig. A.1. Effect of Cr  (σa=0.1 mrad) 
 

 

It is seen that for DGL/0 the parameter Cr affects on the guidance result 

monotonically: the best result is provided by the smallest value of Cr. For DGL/1 the 

graph “r95 vs. Cr” has a distinctive minimum, i.e. there exists an optimal value of Cr. 

 
 
A.1.2. Comparison results 

 
 

The cumulative distribution of the “worst” case miss distances (for a given 

estimator and guidance law combination) can be approximated as the sum of two 

parts: a “deterministic” minimal miss distance (rm), due to the partially compensated 

estimation delay and of a random variable with a Rayleigh type probability 

distribution. Such distribution is characterized by a single parameter (b), which can be 

associated with the variance of the residual (converged) estimation error. Both values 

are monotonic functions of the measurement noise variance, depending on the 

estimator model and its parameters.  
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The best homing performance using DGL/0, the guidance law that does not 

require the knowledge of the target lateral acceleration, was achieved by using a KF-

RST/SF estimator for both noise levels as it can be seen from Table A.4, where the 

respective tuning parameters of each estimator are also indicated.  

 
Table A.4. Best results for DGL/0 

 
 

Estimator 
r95
[m] 

rav
[m] 

rm
[m] 

b 
[m] 

σa=0.1 mrad 
ECA, τs=0.6 s, CS=0.5 3.6 2.9 2.1 0.6 

RST, Cr=2 3.4 2.5 1.6 0.7 
σa=0.2 mrad 

ECA, τs=0.5 s, CS=0.5 7.0 5.4 3.7 1.3 
RST, Cr=2 5.8 4.0 2.2 1.5 

 
 

 
Using DGL/1, the guidance law that fully applies the target lateral acceleration 

in its implementation, the best homing performance was achieved by using a KF-

ECA/SF estimator with a very small time constant τs = 0.2 sec, as it can be seen from 

Table A.5. 

 
 

Table A.5. Best results for DGL/1 
 

 

Estimator 
r95
[m] 

rav
[m] 

rm
[m] 

b 
[m] 

σa=0.1 mrad 
ECA, τs=0.2 s, CS=1 3.2 2.1 1.1 0.8 

RST, Cr=6 5.2 3.2 1.0 1.8 
σa=0.2 mrad 

ECA, τs=0.2 s, CS=0.5 7.3 5.8 4.0 1.3 
RST, Cr=8 9.1 5.5 2.0 2.8 
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The relative grading of the best homing performance of the delay compensating 

guidance law DGL/C with the different estimators is similar to the one with DGL/0. 

The results, summarized in Table A.6, also include the value of the (constant) 

estimation delay compensated by the guidance law. It can be also seen that the 

homing performance with each type of estimator is better than those achieved than by 

the other two guidance laws.   

 

Table A.6. Best results for DGL/C 
 

 

Estimator 
r95
[m] 

rav
[m] 

rm
[m] 

b 
[m] 

σa=0.1 mrad 
ECA, τs=0.4 s, CS=1, τcomp=0.2 s 3.1 2.2 1.4 0.7 

RST, Cr=2, τcomp=0.45 s 3.1 2.1 1.2 0.7 
σa=0.2 mrad 

ECA, τs=0.4 s, Cs=0.5, τcomp=0.2 s 5.8 3.9 2 1.5 
RST, Cr=2, τcomp=1 s 5.9 4.0 2.2 1.5 

 
 
A.2.  Discussion 

 
The numerical results presented in the previous section reveal several important 

phenomena. First, it is demonstrated experimentally that for the interception end game 

against a maneuvering target the Certainty Equivalence property and the associated 

Separation Theorem do not apply. The structure of the best estimator and its 

parameters strongly depend on the guidance law, as well as on the level of the 

measurement noise. Moreover, the relationship between the estimation performance 

and homing performance is less than obvious. This becomes clear in the cases of 

DGL/0 and DGL/1, which are uniquely defined guidance laws.  
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The sensitivity of DGL/0 to the estimator delay is minimal, because this 

guidance law doesn’t include the target acceleration in the zero effort miss distance. 

However, it is strongly affected by a biased estimate of the relative lateral velocity. 

This is the reason that when using this guidance law, the KF-RST/SF estimator is 

superior to KF-ECA/SF. Moreover, the best KF-ECA/SF for this case has a relatively 

large time constant (τs=0.6 s) in order to reduce the bias on the expense of a larger 

estimation delay. 

 

In the case of DGL/1, the guidance law that fully accounts for the target 

acceleration, the situation is entirely different. Due to the high sensitivity of this 

guidance law to the estimation delay, the best estimator is a KF-ECA/SF with a small 

time constant  (τs=0.2 s) in spite of its large negative bias. A reason for the relatively 

good homing performance is the “bang-bang” type guidance law implementation. As 

long as the sign of the zero effort miss distance doesn’t change, even if its absolute 

value is incorrect, the guidance command remains the same. Another possible reason 

may be that the effects of the estimation delay and of the negative bias the homing 

performance tend to weaken each other.  

 

The situation with the guidance law DGL/C is extremely complex. In this case 

there is a strong interaction between the parameters of the estimator and τcomp, the 

delay compensation time of the guidance law. For a given set of tuning parameters of 

the estimator the best value of τcomp can be found. However, the very value of τcomp 

effects the selection of the best tuning parameters for a given estimator structure. 

Finding the best combination requires a simultaneous search in the joint 

estimator/guidance law parameter space. It is also observed that using DGL/C the 
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difference between the homing performances of the various estimators is much smaller 

than with the other guidance laws, as it can be seen in Fig. A.2. DGL/C seems to 

correct, at least partially, the deficiencies of the estimators.  
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Fig. A.2. Worst case performance comparison with different estimators 

 
 

Another unexpected phenomenon is the unclear relationship between actual 

estimation delay in detecting a change in lateral target acceleration, as it is measured 

from the ensemble average of the estimator data, and the best value of τcomp used in the 

guidance law. The best value of τcomp doesn’t have either a direct relationship with the 

predicted value of the minimum time needed to detect target maneuver change [16]. 

This delay is of the order of 0.25 sec for smaller noise level (σa=0.1 mrad) and of the 

order of 0.34 sec for σa=0.2 mrad.  
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The source of these surprising results is most probably in the rough 

approximation of the estimation process made during the development of the guidance 

law [8, 14], assuming that the “evader’s lateral acceleration is a perfect outcome 

delayed by the amount of ∆test, while the estimation of the other state variables is 

ideal”.  

 

From the ensemble average of the estimator data one can observe that there is 

also a delay in the estimated relative lateral velocity. Moreover, the estimation delay of 

this state variable is not the same as the estimation delay of the lateral target 

acceleration and neither of these delays remains constant during the end game. 

   

The results of the study also make clear the relation ship between the three 

differential game based guidance laws. DGL/0 and DGL/1 represent two extreme 

cases. In DGL/0 the lateral target acceleration is not used in the guidance law, while 

DGL/1 fully takes account of it. Depending on the noise level and the estimator 

structure, one of them has a better guaranteed (worst case) homing performance. Low 

noise level and large bandwidth estimator favor DGL/1, while in higher noise and 

using a small bandwidth estimator DGL/0 is superior. The homing performance of 

DGL/C is always the best, but the amount of improvement contributed by its 

implementation depends on the noise level and the estimator. For high noise level the 

delay to be compensated is important and as a consequence the homing performance is 

not very different from that of DGL/0 (see Fig. A.3). In a low level noise environment 

using a fast estimator (ECA, τs=0.2 s) only a small delay has to be compensated. 

Therefore, the homing performance of DGL/C will be only slightly superior to that of 

DGL/1, as it can be se+en from the numerical results in Tables A.4- A.6. 
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Fig A.3. Worst case homing performance of different guidance laws 
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Appendix B. Section 6  of ATR1 
 
 

 Based on the earlier results, summarized in subsection 5.1.1, as well as the 

results of a previous study conducted under AFOSR contract No. F61775-01-WE018, 

the new set of Monte Carlo simulations were oriented to test and compare the homing 

performance of several estimator/guidance law combinations with different 

maneuverability ratios (1.5 ≤ µ ≤ 3.0) and two measurement noise levels                        

(σa = 0.1/0.2 mrad) against two types of random target maneuvers:  

 (i) a “bang-bang” maneuver randomly switched during the interception end-

game; 

(ii) a sinusoidal maneuver with random phase, representing the planar 

projection of a three-dimensional “spiral” maneuver. 

 

First, the results against “bang-bang” maneuvers were extended (from a single 

value of µ = 2) to several values of maneuverability ratios using two well defined 

estimators (ECA with τs = 0.5 sec and Cs = 1; RST with Cr = 1) and the guidance laws 

DGL/1 and DGL/C. For each case the “worst” timing of the commanded direction 

change and the “best” value of delay compensation parameter τcomp were determined 

and summarized in Tables B.1- B.4. The homing performance in these tables is 

characterized by the two numbers, the average miss distance of 100 Monte Carlo runs 

(rav) and the value of a warhead lethality radius that guarantees an SSKP of 0.95 (r95). 

The numerical accuracy of these results is estimated to be of the order of 0.1 m. 
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Table B.1.  Bang-bang maneuver, DGL/1, RST 
 

 0.1 mrad 0.2 mrad     σa 

µ 
r95 [m] rav [m] (tgo)sw [s] r95 rav (tgo)sw [s] 

1.5 17.50 11.26 1.2 30.39 19.47 1.5 
2.0 6.64 4.05 0.7 11.95 7.17 1.1 
2.5 3.69 2.28 0.6 6.62 4.14 0.7 
3.0 2.32 1.52 0.4 4.54 2.74 0.6 

 
 

Table B.2.  Bang-bang maneuver, DGL/1, ECA 
 

 0.1 mrad 0.2 mrad      σa 

µ 
r95 [m] rav [m] (tgo)sw [s] r95 rav (tgo)sw [s] 

1.5 11.73 7.96 1.1 20.20 13.69 1.4 
2.0 4.42 2.81 0.7 7.48 4.87 0.9 
2.5 2.36 1.43 0.5 4.16 2.77 0.6 
3.0 1.69 1.08 0.4 3.08 1.79 0.6 

 
 
 

Table B.3.  Bang-bang maneuver, DGL/C, RST  
 
 

 0.1 mrad  0.2 mrad 
  σa 

µ ∆tcomp 
[s] r95 [m] rav  [m] (tgo)s

w [s] 
τcomp   
   [s] r95 [m] rav [m] (tgo)s

w [s] 
1.5 0.14 11.10 7.61 1.2 0.28 17.35 11.53 2.0 
2.0 0.29 3.15 2.10 0.8 0.23 6.68 4.49 0.8 
2.5 0.30 1.65 1.10 0.6 0.25 3.70 2.42 0.6 
3.0 0.22 1.25 0.80 0.4 0.29 2.62 1.56 0.6 

 
 

Table B.4.  Bang-bang maneuver, DGL/C, ECA 
 

 0.1 mrad  0.2 mrad 
  σa 

µ ∆tcomp 
[s] r95 [m] rav  [m] (tgo)s

w [s] 
τcomp   
   [s] r95 [m] rav [m] (tgo)s

w [s] 
1.5 0.09 9.68 6.72 1.3 0.03 18.95 13.06 1.4 
2.0 0.12 3.17 2.09 0.7 0.10 6.42 4.25 0.9 
2.5 0.18 1.60 1.10 0.5 0.17 3.31 2.19 0.6 
3.0 0.16 1.08 0.73 0.4 0.20 2.38 1.50 0.6 
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These results clearly confirm two expected trends, the strong improvement of 

homing performance with the increasing maneuverability ratio and its deterioration 

with increased noise. The sensitivities of each estimator/guidance law combination 

are, however, different. Between the two estimators the one with the ECA shaping 

filter provides better homing accuracy. The improvement of homing performance 

gained by the delay compensation of DGL/C is also evident. Considering these 

results as a base line for comparison, the great majority of the other simulations were 

made with sinusoidal random phase target maneuvers in the frequency band of 

ω = 1.0 - 7.0 rd/sec. The first group of Monte Carlo simulations with sinusoidal target 

maneuvers was performed against the four estimator/guidance law combinations used 

with “bang-bang” target maneuvers and for each case the “worst” phase was 

identified. The homing performance of these simulations is summarized in Tables B.5 

– B.8. Comparison of the homing performance indicates that the miss distance against 

the “worst” sinusoidal target maneuver is always smaller than against the “worst” 

“bang-bang” maneuver. The reasons for the “reduced” effectiveness of a sinusoidal 

target maneuver are both the lower maneuver energy and the more gradual change, 

compared to the “bang-bang” maneuver of the same maximal amplitude.  

 
 

Table B.5a.  Sinusoidal maneuver, DGL/1, RST,  σa = 0.1 mrad,  
r95 [m] 

 
 

ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 2.12 2.67 3.33 4.33 4.61 5.02 5.30 5.15 3.08 
2.0 0.76 0.96 1.29 1.49 1.85 2.11 2.51 2.78 2.45 
2.5 0.47 0.57 0.67 0.84 1.08 1.23 1.34 1.76 1.81 
3.0 0.39 0.45 0.52 0.65 0.73 0.82 0.91 1.25 1.37 
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Table B.5b.  Sinusoidal maneuver, DGL/1, RST, σa = 0.1 mrad,  
rav [m] 

 
 

ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 1.08 1.32 1.72 2.23 2.68 3.08 3.36 3.20 2.03 
2.0 0.33 0.43 0.57 0.78 1.01 1.24 1.44 1.77 1.53 
2.5 0.20 0.25 0.32 0.42 0.54 0.65 0.75 0.99 1.03 
3.0 0.15 0.19 0.23 0.29 0.34 0.42 0.50 0.68 0.77 
 

 
Table B.5c.  Sinusoidal maneuver, DGL/1, RST, σa = 0.2 mrad,  

r95 [m] 
 

 
ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 3.90 5.41 7.18 8.45 8.81 9.39 9.47 7.54 4.08 
2.0 1.50 1.83 2.56 3.20 3.73 4.36 4.99 5.25 3.68 
2.0 0.91 1.22 1.41 1.82 2.17 2.55 2.91 3.53 3.11 
3.0 0.82 0.96 1.18 1.37 1.64 1.73 2.00 2.55 2.51 
 

           
 

Table B.5d.  Sinusoidal maneuver, DGL/1, RST, σa = 0.2 mrad,  
rav [m] 

 
 

ω , rad/s 
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 2.12 2.74 3.64 4.56 5.31 5.74 5.83 4.51 2.44 
2.0 0.66 0.93 1.27 1.71 2.16 2.60 2.93 3.20 2.26 
2.5 0.36 0.48 0.68 0.92 1.18 1.45 1.70 2.15 1.86 
3.0 0.26 0.35 0.47 0.62 0.78 0.93 1.10 1.43 1.41 

 
 
 

Table B.6a.  Sinusoidal maneuver, DGL/1, ECA, σa = 0.1 mrad,  
r95 [m] 

 
 

ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 4.37 4.80 4.33 4.35 4.49 4.60 4.65 4.01 2.71 
2.0 1.62 1.69 1.77 1.93 2.10 2.17 2.17 2.26 1.96 
2.5 0.86 0.89 1.01 1.08 1.19 1.21 1.31 1.44 1.46 
3.0 0.65 0.69 0.70 0.74 0.80 0.84 0.89 1.00 1.09 
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Table B.6b.  Sinusoidal maneuver, DGL/1, ECA, σa = 0.1 mrad,  
rav [m] 

 
 

ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 2.57 2.69 2.79 2.87 2.93 2.94 2.92 2.65 2.65 
2.0 0.86 0.90 0.99 1.10 1.18 1.27 1.36 1.41 1.41 
2.5 0.47 0.49 0.55 0.59 0.65 0.70 0.76 0.85 0.85 
3.0 0.31 0.33 0.35 0.38 0.42 0.47 0.50 0.59 0.59 
 
 

 
Table B.6c.  Sinusoidal maneuver, DGL/1, ECA, σa = 0.2 mrad,  

r95 [m] 
 

 
ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 7.91 8.11 8.38 8.06 7.57 7.51 7.40 6.02 3.83 
2.0 2.98 3.13 3.25 3.44 3.68 3.91 3.92 3.86 2.37 
2.5 1.69 1.76 1.82 2.08 2.22 2.41 2.65 2.78 2.37 
3.0 1.25 1.32 1.39 1.48 1.62 1.66 1.78 1.92 1.96 

 
 

 
Table B.6d.  Sinusoidal maneuver, DGL/1, ECA, σa = 0.2 mrad,  

rav [m] 
 

 
 

ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 4.91 5.03 5.08 5.08 4.98 4.92 4.78 4.00 2.32 
2.0 1.76 1.88 2.00 2.16 2.34 2.48 2.56 2.54 1.96 
2.5 0.94 0.98 1.09 1.20 1.30 1.43 1.54 1.67 1.47 
3.0 0.63 0.67 0.73 0.80 0.88 0.94 1.01 1.14 1.54 
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Table B.7a.  Sinusoidal maneuver, DGL/C, RST, σa = 0.1 mrad,  
r95 [m] 

 
 

ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 5.12 4.99 4.62 4.58 4.62 4.64 4.56 3.78 2.60 
2.0 2.67 2.67 2.64 2.45 2.41 2.37 2.31 1.97 1.54 
2.5 1.52 1.52 1.47 1.50 1.48 1.42 1.44 1.33 1.12 
3.0 0.93 0.92 0.94 0.95 0.95 0.99 0.97 0.97 0.95 
 

 
Table B.7b.  Sinusoidal maneuver, DGL/C, RST, σa = 0.1 mrad,  

rav [m] 
 
 

ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 3.08 3.11 3.13 3.11 3.09 3.02 2.89 2.52 1.78 
2.0 1.82 1.82 1.78 1.69 1.63 1.59 1.51 1.28 0.99 
2.5 1.00 0.99 0.95 0.97 0.94 0.91 0.90 0.83 0.70 
3.0 0.56 0.55 0.57 0.57 0.57 0.58 0.57 0.58 0.55 
 
 

 
Table B.7c.  Sinusoidal maneuver, DGL/C, RST, σa = 0.2 mrad,  

r95 [m] 
 
 

ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 8.90 9.03 8.46 8.21 7.67 7.13 6.82 6.13 3.82 
2.0 3.44 3.53 3.60 3.71 3.69 3.73 3.75 3.42 2.67 
2.5 2.06 2.12 2.14 2.23 2.38 2.39 2.42 2.43 2.05 
3.0 1.62 1.61 1.66 1.68 1.72 1.78 1.77 1.85 1.89 
 
 

 
Table B.7d.  Sinusoidal maneuver, DGL/C, RST, σa = 0.2 mrad,  

rav [m] 
 

 
ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 5.81 5.81 5.63 5.45 5.14 4.85 4.61 4.01 2.32 
2.0 2.24 2.32 2.38 2.41 2.46 2.53 2.54 2.31 1.75 
2.5 1.29 1.32 1.34 1.43 1.48 1.50 1.54 1.50 1.27 
3.0 0.91 0.91 0.95 0.98 0.99 1.04 1.05 1.09 1.08 
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Table B.8a.  Sinusoidal maneuver, DGL/C, ECA, σa = 0.1 mrad,  

r95 [m] 
 

ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 6.42 6.3 5.36 4.94 4.75 4.62 4.35 3.49 2.41 
2.0 2.56 2.58 2.55 2.37 2.36 2.36 2.28 1.98 1.58 
2.5 1.59 1.60 1.52 1.54 1.51 1.47 1.45 1.29 1.09 
3.0 1.01 1.09 1.08 1.08 1.05 1.07 1.04 0.99 0.90 

 
 

Table B.8b.  Sinusoidal maneuver, DGL/C, ECA, σa = 0.1 mrad,  
rav [m] 

 
ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 4.07 3.94 3.68 3.45 3.31 3.14 2.93 2.38 1.66 
2.0 1.70 1.70 1.67 1.60 1.57 1.54 1.47 1.28 1.01 
2.5 1.07 1.07 1.02 1.02 0.99 0.94 0.93 0.84 0.69 
3.0 0.69 0.68 0.67 0.67 0.64 0.65 0.63 0.59 0.53 
 
 

 
Table B.8c.  Sinusoidal maneuver, DGL/C, ECA, σa = 0.2 mrad,  

r95 [m] 
 

 
ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 8.93 8.65 8.34 8.20 7.67 7.20 7.10 5.67 3.67 
2.0 3.73 3.82 3.83 3.88 3.86 3.83 3.79 3.41 2.64 
2.5 2.51 2.51 2.56 2.49 2.47 2.47 2.44 2.28 1.94 
3.0 1.82 1.83 1.82 1.82 1.80 1.82 1.82 1.82 1.66 
 

 
 

Table B.8d.  Sinusoidal maneuver, DGL/C, ECA, σa = 0.2 mrad,  
rav [m] 

 
 

ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 5.0 7.5 

1.5 5.58 5.56 5.45 5.31 5.06 4.87 4.67 3.88 2.29 
2.0 2.55 2.60 2.62 2.61 2.56 2.56 2.54 2.30 1.73 
2.5 1.68 1.70 1.67 1.65 1.66 1.64 1.58 1.48 1.21 
3.0 1.16 1.16 1.13 1.16 1.15 1.12 1.13 1.08 0.98 
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The influence of different maneuver frequencies on the homing performance is 

shown in Fig. B.1 for µ = 2, using the average miss distance of the “worst” case as a 

figure of merit. For other values of µ, the qualitative behavior is similar. 
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DGL/1, ECA                         
DGL/C (∆ tcomp=0.12 s), ECA
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DGL/C (∆ tcomp=0.29 s), RST

Fig. B.1.  Influence of maneuver frequency 
 
 

 From these results several phenomena can be learned. The dependence of 

homing performance on the target maneuver frequency for the two different guidance 

laws is very different. Using DGL/1 there is a distinct maximum of the miss distance, 

i. e. a “worst” maneuver frequency, depending on the estimator. Moreover, for lower 

maneuver frequencies the RST estimator should be preferred, while for larger values 

of ω the ECA estimator yields better results. Using DGL/C the homing performance 

with both estimators is improving as the maneuver frequency increases. The 

difference between the two estimators is not significant, because this guidance law 

compensates for the deficiencies of both. The results also show that for the lower 
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maneuver frequencies DGL/1 is better, but for higher frequencies DGL/C provides 

guidance that is more accurate. The crossover frequencies between DGL/C and 

DGL/1, as well as between the two estimators with DGL/1 depend on the value of µ.  

 

In spite of the fact that the miss distance against the “worst” sinusoidal target 

maneuver is always smaller than against the “worst” “bang-bang” maneuver, it has 

been quite obvious that neither the ECA nor the RST shaping filters are “ideal” for 

modeling periodical random phase maneuvers. In Fig. B.2 the actual lateral target 

acceleration is compared to the ensemble average of the one estimated by using an 

ECA shaping filter, exhibiting a substantial time varying delay.  
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Fig. B.2. Estimation of target lateral acceleration with ECA  
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By replacing this shaping filter by one designed for a sinusoidal maneuver of a 

given frequency [36], denoted as PSF, one can obtain an “almost perfect” estimate, as 

shown in Fig. B.3. As a consequence substantially reduced miss distances are 

achieved.  
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Fig. B.3. Estimation of target lateral acceleration with matched filter 

 

If the assumed and actual frequencies don’t match, the estimation performance 

deteriorates, as it is shown in Fig. B.4.  

 

The consequence of the increased estimation errors is a deterioration of the 

homing performance, summarized in Tables B.9 – B.10. 
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Fig. B.4. Estimation of target lateral acceleration with unmatched PSF 

 

Table B.9a.  Sinusoidal and bang-bang maneuver, DGL/1, 
PSF (ωf = 2 rad/s, Cp = 1),  σa = 0.1 mrad, 

 r95 [m] 
 

ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 bang- 
bang 

1.5 2.49 1.78 1.08 0.55 0.51 1.07 11.5 
2.0 0.85 0.69 0.43 0.3 0.29 0.48 4.23 
2.5 0.50 0.44 0.32 0.21 0.21 0.37 2.50 
3.0 0.40 0.35 0.25 0.15 0.16 0.30 1.78 

 
 

Table B.9b.  Sinusoidal and bang-bang maneuver, DGL/1, 
PSF (ωf = 2 rad/s, Cp = 1),  σa = 0.1 mrad,  

rav [m] 
 

ω , rad/s
µ 

0.5 1.0 1.5 2.0 2.5 3.0 bang- 
bang 

1.5 1.56 0.97 0.51 0.24 0.20 0.46 7.96 
2.0 0.46 0.32 0.20 0.13 0.13 0.20 3.13 
2.5 0.25 0.19 0.14 0.10 0.11 0.15 1.74 
3.0 0.18 0.14 0.12 0.09 0.10 0.14 1.40 
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Table B.10a.  Sinusoidal and bang-bang maneuver, DGL/1, 
PSF (ωf = 3 rad/s, Cp = 1),  σa = 0.1 mrad,  

r95 [m] 
 

ω , rad/s
µ 

1.5 2.0 2.5 3.0 3.5 4.0 bang- 
bang 

1.5 3.12 1.64 0.80 0.52 0.82 2.25 15.18 
2.0 1.27 0.81 0.43 0.29 0.38 0.78 3.78 
2.5 0.79 0.52 0.34 0.19 0.29 0.52 1.98 
3.0 0.57 0.42 0.26 0.14 0.22 0.43 1.16 

 
 

Table B.10b.  Sinusoidal and bang-bang maneuver, DGL/1, 
PSF (ωf = 3 rad/s, Cp = 1),  σa = 0.1 mrad,  

rav [m] 
 

ω , rad/s
µ 

1.5 2.0 2.5 3.0 3.5 4.0 bang- 
bang 

1.5 2.14 0.98 0.40 0.20 0.33 1.09 10.89 
2.0 0.80 0.42 0.19 0.11 0.16 0.38 2.68 
2.5 0.45 0.26 0.14 0.09 0.13 0.25 1.28 
3.0 0.31 0.19 0.12 0.08 0.11 0.20 0.78 

 
  

These numerical results are plotted in Fig. AR1.7 together with those of Tables B.6b 

and B.8 are plotted in Fig. B.5. 
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Fig. B.5. Homing performance with different estimators 
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From these results, one can conclude that if the mismatch between the PSF 

and the actual frequency is not too large (less than ± 1.0 rd/sec), the performance 

deterioration is acceptable. If the uncertainty of the maneuvering frequency is too 

large, an estimator with ECA/SF will limit the performance deterioration.  

 

Although online estimation of the maneuver frequency might has been 

considered, earlier results [19] indicated that good results could be expected only if 

the level of the measurement noise level is very low (order of σa = 0.01 rd/sec), which 

is not a realistic assumption.  

 

The sensitivity of the PSF estimator to frequency mismatch depends on the 

value of the tuning parameter Cp, as it is illustrated in Fig. B.6. A smaller value of this 

parameter, representing higher process noise, leads to some increase of miss distance 

at the “matched” frequency, but reduces the mismatch sensitivity. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ω [rad/s]

W
or

st
 c

as
e 

av
er

ag
e 

m
is

s 
di

st
an

ce
 [m

]

Sinusoidal maneuver: DGL/1, PSF (ωf=2 rad/s), µ=2, σa=0.1 mrad

Cp=1  
Cp=2  
Cp=0.5

 
 

Fig. B.6. The effect of Cp on homing performance due to frequency 
mismatch 

 82



 
 In Fig. B.7 the ensemble average of the estimation error in target acceleration 

obtained from 100 Monte Carlo runs is depicted for three estimators with different 

shaping filters. The ensemble average time histories clearly illustrate the origin of   

performance deterioration due to the use of an “unmatched” estimator. With the 

matched shaping filter the estimation error converges to very small values in the last 

part of the end game, while in the other cases (ECA or mismatched PSF) there is no 

convergence. The resulting average miss distances are the clear consequences of the 

estimation errors. 
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Fig. B.7. Mean estimation error of different estimators in target 

acceleration  
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 Similarly, using some PSF estimator against a “bang-bang” target maneuver  

also reduces the homing performance, as it can be seen in Fig. B.8. Nevertheless, the 

performance deterioration seems less severe in these cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10. Homing performance against bang-bang maneuver. 

 

 

Fig. B.8. Homing performance against bang-bang maneuver 
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Appendix C. Estimator Equations 

 

C.1. Estimation/guidance simulation 

 

The numerical integration of the nonlinear equations of motion is conducted with a variable 

integration step ∆ti, for  0 ≤ t ≤ tf.  The angle between the current and initial line of sight is measured 

with constant frequency f (100 Hz in this simulation) which gives the constant sampling period T=f--1 .  

The measurements are made at the moments         = kT,  k=1,…, f tf. 

                                                                  ∆ti       

  0                                    ti          ti+1                                           tf                    

        

                                                                 T 

                                        measurement                               measurement 

Fig. C.1. Scheme of the estimation/guidance procedure 

 

For the sake of simplicity it is assumed that                .  

The guidance law is driven at the moment ti  by the estimates                     of the relative 

separation y(ti) between the missiles, the relative velocity v(ti) and the target acceleration ae(ti) normal 

to the initial line of sight.  These estimates are the outputs of a Kalman filter working in accordance 

with the augmented target model (shaping filter). 

eiii av,y ˆ,ˆˆ
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C.2. Target models (shaping filters) 

C.2.1. ECA  model (untuned) 

The state vector of the target model is 

                                                                                                                                               (C.1)                               

where ae
c  is the target acceleration command. 

The target model is described by the differential equation 

                                                                                                                                                (C.2) 

where   

 

                                                                                                                                                (C.3)          

                                                                                                                                                 

                                                                                                                                                  

                                                                                                                                                 (C.4)               

                              

                                                                                                                                                 (C.5)                              

ap  is the interceptor acceleration normal to the initial line of sight;  

                                   (C.6)    

 is the process noise, which is assumed to be zero-mean, white and Gaussian. 

1

riance q. 

                                                    w ~W N(0,q),                                             

 

w

The tuning parameters of the ECA estimator are: 

) The decorrelation time of the maneuver τs, 

2) The coefficient Cs of the process noise cova

C.2.2. ECA model (tuned for target maneuver switch) 
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This model is described by the same equations (C.1) – (C.6).  Additionally it is assumed that 

 

                                                                                                                                                 (C.7)  

here         is the switching time to which  the model is tuned.                                         

.2.3. Periodical target model

  

 

w

 

C  

del vector is 

                                                                                                                                                 (C.8) 

here je  is the time derivative of  the target acceleration (jerk).  The target model is described by the 

                                                                                                          (C.9) 

,  C and w are given by (C.4), (C.5) and (C.6), respectively.  

he tuning parameters of the periodical estimator are: 

1) d; 

 

.3. Discrete time version 
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differential equation (C.2) where 
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T

The target frequency ωf  to which the model is tune

2) The coefficient Cs of the process noise covariance q. 

C
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Discretization of (C.2) with time step  ∆ti  gives 

                                                                                                                                                  (C.10) 

                                       Fi  = exp(A∆ti)  ,                                                        (C.11) 

i

.4.  Measurement model 

asurements of the angle φLOS  between the current and initial lines of sight 

are acq   

                                      Hk  = [1/rk, 0, 0, 0]T ,                                                        (C.16)  

.17) 

.5. Kalman filter equations 

,1 iiiiii w

where 

          

                                                           Γi = FiB∆t   ,                                                      (C.12) 

                                    wi  ~ N(0, qi),           qi = ∆ti  q ,                                       (C.13)  

                                                           Gi = C .                                                              (C.14)   

 

C

The discrete-time me

uired with a zero-mean Gaussian angular measurement noise of a constant  variance:                   

                                      zk = φLOS  + ζ  = Hk Wk + ζ  ,                                         (C.15) 

where 

            

rk  is the  range between the missiles at t=tk  which is assumed  to be measured accurately; 

                                                     ζ  ∼ Ν(0, σ2
ang)                                                              (C

is the measurement error. 

 

 

 

 

C

Γ pi GaXFX ++=+
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Discrete-time Kalman filters are implemented based on the discrete-time state model (C.10) and 

the mea

                                                                                                        (C.18) 

he initial covariance matrix is chosen arbitrarily as 

                                                                                     (C.19) 

he time propagation equations (between the measurements) are as follows. 

                                                                                                         (C..20) 

                                                                                                                                                (C.21) 

                                                                                            (C.22) 

                                                                                       (C.24) 

                                                     (C.25) 

he measurement update equations are as follows. 

,1-,...,,Γˆˆ 11 ++ =+= kkpiiiii iiiaXFX

1 1
ˆ , ,..., -1 ,i k i k kX i i i+ += =

.
0100000
0010000
00

0/0 ⎥
⎥
⎥
⎤

⎢
⎢
⎢

=P

.)0,0,0,0(ˆ 0/0
TX =

1/1 +
=+ ki

XX kk

1, ,..., -1 ,T T
i i i i k kF q G G i i i ++ =

surements model (C.15).  The initial state estimate is 
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 0100⎡

                                                             

 100000 ⎥
⎦

⎢
⎣

 

T

            State prediction: 

                                        

 

  

            Measurement prediction: 

                                                      ̂z H

                                                                                                                                                  (C.23) 

            State prediction covariance: 

                                                           1i i iP F P+ =

                                                                                            

                                                                                             1/1 +
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ˆˆ

1
ˆˆ /1 +

=+ ki
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            Innovations process covariance: 

                  

                                                                                                                                                  (C.26) 

                                                                                            (C.27) 

                                                                                                                                                 (C.28)                          

 state covariance: 

                                                                                                        (C.29) 

.6. Identification by an Adaptive Multiple Model Estimator 

used in parallel, each tuned to some 

hypoth

    

                                                                   (C.30) 

,σ2
ang1/111 += ++++

T
kkkkk HPHS

1
1 1/ 1 1 ,T

k k k k kK P H S −
+ + + +=

,)ˆ(ˆˆ /111/11/1 kkkkkkkk zzKXX ++++++ −+=

.111/11/1 KS- KP T

             Filter gain: 

 

                                                      

             Updated state estimate: 

 

  

            

Updated

                                          

                                           P

 

C

To identify the target maneuver, a set of M filters are 

esis about the target maneuver.  In this case the notation refers to the filter number j with the 

bracketed index k : for example, Sj(k)  means the innovation covariance of the  j –th filter after the  

k –th  measurement.  The a posteriori probability that the hypothesis representing by  the j –th filter is 

true,  is calculated as follows.   

                                                 

                                                  

(C.31) 

kkkkkkk ++++++ =

1(0) , 1,..., ,jp j M= =
M

,)1()(1)( −= kpkf
c

kp jjj
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                    (C.32)  

                    (C.33)                          

 
 

 

where the likelihood function corresponding to the j-th filter is given by 
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Appendix D. Three-dimensional Simulation Database 
 

 
D.1. Target (TBM) simulation model (4 degrees of freedom) 
 
Launch range:                          600 km                        
Trajectory:                               minimum energy 
Ballistic coefficient:                β = 5000 kg/m2; 
Lift-to-drag ratio:                     Λ = 2.6    
 
 
"Initial” conditions for reentry at altitude of 150 km 
   
Velocity:                                    Ve0= 1720 m/s 
Flight path angle:                       γe0 = -18.2o  
Horizontal distance from target:         xe0 = 210.3 km  
 
 
Spiral maneuver parameters 
  
Roll damping parameter :                b = 0.004 m2/kg 
Roll disturbance parameter:             c  - varying 1.8⋅10-6 ÷ 4.5⋅10-6 m/kg 
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Fig. D.1. Nominal target reentry velocity profile 
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Fig. D.2. Nominal target maneuverability profile 
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Fig. D.3. Nominal target roll rate profiles 
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D.2. Interceptor model 
 

Rocket motor and aerodynamic data: 
 
Specific impulse:                      Isp = 250 sec.; 
 

 tb [sec] T [kN] m0 [kg] SCD [m2] SCLmax [m2] 
1st

 stage 6.5 229 1540 0.10 0.24 
2nd stage 13 103 781 0.05 0.20 

 
 
Delay between stages: 
 
 hint [km] ∆tb [sec] 

20 3 
25 12 
30 29 

 
 
 
 
Precalculation results: 
 
 

hint [km] Firing angle  
[deg] 

Time before 
interception 

[sec] 
20 63.9 21.92 
25 66.1 31.47 
30 70.2 48.4 
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Fig. D.4.  Nominal interceptor velocity profiles 
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D.3. Endgame initial conditions 
 
 
m*

p0: initial interceptor mass; 
t*

p0:  time from interceptor launch 
V*

i0: initial velocity; 
γ*

i0:  initial flight path angle; 
x*

i0:  initial range from the interceptor launch site; 
h*

i0:  initial altitude, 
    (i=p,e) 
 
 

                              

Interceptor (pursuer) TBM (evader) 
hint 

[km] m*
p0 

[kg] 
t*

p0 
[sec] 

V*
p0 

[m/s] 

γ*
p0 

[deg
] 

x*
p0 

[km] 

h*
p0 

[km] 
V*

e0 
[m/s] 

γ*
e0 

[deg] 
xe0 

[km] 

he0 
[km] 

20 442.9 17.56 1911.7 45.7 11.58 12.71 2260.4 -45.2 25.61 26.93 
25 411.4 27.3 1998.8 43.6 16.01 17.78 2271.4 -44.7 30.38 31.68 
30 416.5 44.18 1894.5 37.7 20.38 23.69 2265.2 -44.1 35.52 36.71 
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Fig. D.5.  Nominal endgame velocity profiles for hint = 20 km 

 
 

 95



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 0 0.5 1 1.5 2

 
2.5 3 3.5 4 4.5

0

5

10

15

20

25

30

Time-to-go [sec]

am
ax

 [g
]

Pursuer
Evader

Fig. D.6.  Nominal endgame maneuverability profiles for hint = 20 km 
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Fig. D.7.  Nominal endgame maneuverability ratio for hint = 20 km 
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Fig. D.8.  Nominal endgame roll rate profiles for hint = 20 km 

 
 
 
 

D.4. Endgame final conditions 
 
tf:   endgame duration 
µf: final maneuverability ratio 
 
 
 
 
 
                              

hint [km] tf [sec] µf

20 4.36 2.6 
25 4.17 3.2 
30 4.23 3.1  
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